Abstract:
A module for a system for driving and synchronizing a countershaft of a transmission gearbox. The module includes a coupling device having an input element intended to be rotationally coupled to a reversible electric machine and an output element intended to be rotationally coupled to the countershaft. The coupling device has a coupled state in which the clutch device is able to transmit torque between the input element and the output element and an uncoupled state in which the input element and the output element are uncoupled. Also included is a lock-up device which has a lock-up state in which said lock-up device blocks the rotation of the input element of the clutch device, and a released state in which said lock-up device allows the input element to rotate.
Abstract:
A hybrid drive sub-assembly for a vehicle has primary gear wheels, secondary gear wheels that are able to be coupled to a secondary shaft, and an intermediate shaft to which intermediate gear wheels are secured for rotation therewith. The primary gear wheel(s) and the secondary gear wheels each meshing permanently with a corresponding gear wheel from among the intermediate gear wheels. This hybrid sub-assembly is equipped with a motorized module having a reversible electric machine, an interface for connecting to the intermediate shaft, a speed reducer, a torsional oscillation damping device and a coupling mechanism that is able to couple and uncouple the reversible electric machine and the intermediate shaft.
Abstract:
An automated range-change transmission (CT) of a motor vehicle, has a main transmission (HG) with a lay-shaft design, which features a main shaft (WH) and at least one lay shaft (WVG1, WVG2), and a pre-shift group (GV) drivingly connected upstream on the main transmission (HG). An input shaft (WGE) of the range-change transmission (CT) is able to be coupled with an internal combustion engine (VM) of a drive unit of the motor vehicle. An output shaft (WGA) of the range-change transmission (CT) is coupled with an axle drive (AB) of the motor vehicle. An electric motor (EM) of the drive unit is able to be coupled at the pre-shift group (GV) through a planetary transmission (PG), whereas the electric motor (EM) is coupled to a first element of the planetary transmission (PG), a second element of the planetary transmission (PG) is coupled with an input shaft of the pre-shift group (GV), and a third element of the planetary transmission (PG) is coupled with an output shaft of the pre-shift group (GV).
Abstract:
An output shaft is arranged to be lateral and parallel to engine input shafts and a motor input shaft. An engine side gear mechanism for transmitting a power of the engine input shafts to the output shaft is provided. A motor side gear mechanism for transmitting a power of the motor input shaft to the output shaft is provided. An input side clutch engages and disengages the engine input shafts and the motor input shaft. When the input side clutch is engaged, the power transmission between a position where the engine side gear mechanism is arranged on the engine input shafts and a position where the motor side gear mechanism is arranged on the motor input shaft is invariably possible.
Abstract:
A drive engages a shaft (4) and, via at least one shaft (5, 6) of a transmission, an electric machine. An output can be connected to another shaft (9). During gear shifts, the shafts (4, 5, 6, 9) are couple such that the rotational speed of the shaft (5, 6), which can couple the electric machine when torque at the shaft (9) is equivalent to the torque of the electric machine, and is a product of the gear ratio between the shaft (5, 6) and the shaft (9) and the rotational speed of the shaft (9) or, when torque present at the shaft (9), is equal to the torque of the drive engine or electric machine, and is a sum of the product of the rotational speed of the shaft (4) and a first variable, and the product of the rotational speed of the shaft (9) and a second variable.
Abstract:
A two-speed transmission for a vehicle may include a first input shaft, a second input shaft connected to a motor, and a clutch unit for selectively transmitting the power of the motor to an output shaft from the first input shaft and/or the second input shaft. The clutch unit may synchronize rotation speeds of the first input shaft and the second input shaft when the power of the motor is transmitted to the output shaft from the first input shaft.
Abstract:
A method for operating a drive train of a hybrid vehicle with a hybrid drive comprising at least an electric machine and an internal combustion engine, wherein an automated manual transmission is connected between the internal combustion engine and an output, wherein the electric machine is coupled via a friction clutch to a shaft of the automated manual transmission. Wherein in the automated manual transmission, by interruption of the drive torque provided by the hybrid drive on the output, shifts are executed in such a way that in a first phase the drive torque provided at the output is first reduced, subsequently in a second phase the actual gear shift is executed and following that in a third phase drive torque is built up at the output. Wherein for execution of the actual shift after a gear disengagement of an actual gear of the shift and before a gear engagement of a target gear of the shift, the automated manual transmission is synchronized using a flywheel mass of the electric machine such that, when the friction clutch is opened, the rotational speed of the electric machine is brought to an inertial rotational speed and that subsequently the friction clutch is first closed to the inertial synchronization of the manual transmission and subsequently at least partially opened again.
Abstract:
An output shaft is arranged to be lateral and parallel to engine input shafts and a motor input shaft. An engine side gear mechanism for transmitting a power of the engine input shafts to the output shaft is provided. A motor side gear mechanism for transmitting a power of the motor input shaft to the output shaft is provided. An input side clutch engages and disengages the engine input shafts and the motor input shaft. When the input side clutch is engaged, the power transmission between a position where the engine side gear mechanism is arranged on the engine input shafts and a position where the motor side gear mechanism is arranged on the motor input shaft is invariably possible.
Abstract:
A power transmission apparatus 1 for a hybrid vehicle having an engine 6 and a motor 7 is provided with a planetary gear mechanism 31 configured to differentially rotate a sun gear 32, a carrier 36, and a ring gear 35. The sun gear 32 is connected to one of a first input shaft and a second input shaft and to the motor 7. The ring gear 35 is connected to a lock mechanism capable of stopping a rotation state. The carrier 36 is configured to transmit power to a counter shaft 14. The other of the first input shaft and the second input shaft is configured to transmit power to the counter shaft 14 without passing through the planetary gear mechanism 31.
Abstract:
A transmission has an input member and an output member, first and second intermediate shafts having substantially identical gear sets with gears concentric with and selectively connectable for rotation with the first and second intermediate shafts, respectively. Output gears are concentric with and rotatable with the output member and mesh with the substantially identical gear sets. First and second torque-transmitting devices are operable for transmitting torque from the input member to the first and second intermediate shafts, respectively. Torque-transmitting mechanisms are mounted concentric with, rotatable about and selectively engagable with the gears mounted on the intermediate shafts. A controller is operatively connected to the torque-transmitting mechanisms and to at least one of the torque-transmitting devices. The torque-transmitting mechanisms and torque-transmitting devices may be engaged such that torque is carried substantially equally by both intermediate shafts during a speed ratio established between the input member and the output member.