Abstract:
A photoelectric conversion apparatus includes a photoelectric conversion unit, a signal line, a circuit block, and a control circuit. The circuit block includes a differential amplifier circuit including a feedback path, a first switch that controls conduction between an output terminal and the signal line, a second switch that controls conduction between an inverting input terminal and the signal line, and a third switch that controls conduction between the inverting input terminal and the output terminal. The control circuit controls a signal for controlling the first switch and a signal for controlling the third switch to have the relation of logical NOT.
Abstract:
A system for generating clock signals for a photonic quantum computing system includes a first pump photon source, a first photon-pair source optically coupled to the first pump photon source, and a first photodetector optically coupled to the first photon-pair source. The system also includes a first clock generator electrically coupled to the first photodetector, a second pump photon source, a second photon-pair source optically coupled to the second pump photon source, and a second photodetector optically coupled to the second photon-pair source. The system further includes a second clock generator electrically coupled to the second photodetector and a clock mediator coupled to the first clock generator and the second clock generator.
Abstract:
An optical parameter measurement device and a corresponding method are provided. A light beam from a to-be-tested display panel is split by a beam-splitting assembly into at least two testing light beams. A voltage value corresponding to a first testing light beam is measured by a trans-impedance amplification circuit corresponding to a first optical sensor. Next, an integration time period is determined by a control circuit according to voltage values from the trans-impedance amplification circuit and a predetermined relational model between voltage values corresponding to the light intensities and integration time periods. A voltage value corresponding to a second testing light beam is finely measured by the integration circuit corresponding to a second optical sensor within the integration time period. Finally, the display brightness value of the to-be-tested display panel is determined by the control circuit according to a voltage value from the integration circuit within the integration time period.
Abstract:
Disclosed are an ultraviolet measuring device, a photodetector, an ultraviolet detector, an ultraviolet index calculation device, and an electronic device or portable terminal including the same. In one aspect, an ultraviolet measuring is provided to comprise: a substrate on which an electrode is formed; a readout integrated circuit (ROTC) unit electrically connected with the electrode; and an aluminum gallium nitride (AlGaN) based UVB sensor electrically connected with the readout integrated circuit unit and formed on an insulating substrate, wherein the read-out integrated circuit converts a photocurrent input from the UV sensor into a digital signal including UV data.
Abstract:
One embodiment of the disclosure includes an A-D conversion circuit connected to a photodiode for providing a silicon photomultiplier that with enhanced detection accuracy and a time resolution. A current generated upon photon detection by the photodiode partially flows into another photodiode adjacent to the photodiode arranged in parallel via a resistor. At this time, the current is charged into a parasitic capacitance adjacent to the photodiode, and thereafter is discharged. However, the discharged current cannot flow toward an output terminal by the A-D conversion circuit, and also cannot switch the A-D conversion circuit. Consequently, the construction of the disclosure can detect light with no influence of the current discharged from the parasitic capacitance. As a result, the disclosure achieves a silicon photomultiplier with high detection accuracy and a satisfactory time resolution.
Abstract:
An optical sensor includes at least one photodetector configured to be reverse biased at a voltage exceeding a breakdown voltage by an excess bias voltage. At least one control unit is configured to adjust the reverse bias of the at least one photodetector. A method of operating an optical sensor is also disclosed.
Abstract:
A light sensor assembly is provided including a base assembly configured to be fixedly mounted to a housing of a light fixture. The base assembly holds fixture contacts configured to be electrically connected to the light fixture. A photocell module is provided on the base assembly. The photocell module includes a control circuit board having an upper surface and a lower surface. The control board includes contact openings therethrough and conductors associated with corresponding openings. The photocell module has a photocell electrically connected to the control circuit board. Receptacle contacts are received in corresponding contact openings in the control board. Each receptacle contact has a socket removably receiving the corresponding fixture contact. Each receptacle contact has a mating interface electrically connected to the corresponding fixture contact. Each receptacle contact has a mounting beam terminated to the corresponding conductor of the control board. A cover is coupled to the base assembly over the photocell module.
Abstract:
A photoelectric conversion apparatus includes a photoelectric conversion unit, a signal line, a circuit block, and a control circuit. The circuit block includes a differential amplifier circuit including a feedback path, a first switch that controls conduction between an output terminal and the signal line, a second switch that controls conduction between an inverting input terminal and the signal line, and a third switch that controls conduction between the inverting input terminal and the output terminal. The control circuit controls a signal for controlling the first switch and a signal for controlling the third switch to have the relation of logical NOT.
Abstract:
A pulse oximetry measurement system uses a pseudo-random noise generator to stimulate one or more light emitting diodes (LEDs). The light amplitudes from these LEDs, after passing through a part of a body, are detected by a phototransistor or photodiode and digitized with an analog-to-digital converter (ADC). The digitized ADC light amplitude values are re-correlated with the outgoing pseudo-random noise stimulus. Spread spectrum techniques are known for their noise mitigation properties, and ability to pass multiple signals through the same medium without interference. Thus, these measurements can be performed substantially simultaneously with minimal interference from each other. The pulse oximetry measurement system correlates the measured light intensities using pseudo-random noise generation and phase division multiplexing, and computes the measured and correlated peak-to-peak detected light amplitudes to obtain a ratio between these light amplitudes for determining oxygen saturation in the blood, and may also be used for heart rate monitoring.
Abstract:
One embodiment of the disclosure includes an A-D conversion circuit connected to a photodiode for providing a silicon photomultiplier that with enhanced detection accuracy and a time resolution. A current generated upon photon detection by the photodiode partially flows into another photodiode adjacent to the photodiode arranged in parallel via a resistor. At this time, the current is charged into a parasitic capacitance adjacent to the photodiode, and thereafter is discharged. However, the discharged current cannot flow toward an output terminal by the A-D conversion circuit, and also cannot switch the A-D conversion circuit. Consequently, the construction of the disclosure can detect light with no influence of the current discharged from the parasitic capacitance. As a result, the disclosure achieves a silicon photomultiplier with high detection accuracy and a satisfactory time resolution.