Abstract:
An X-ray inspection apparatus includes an X-ray source, an X-ray detector, and a stage. A dose rate calculation unit of a control section calculates a dose rate at any position in an inspection space, a stage face information storage unit 32 stores stage face information, an irradiation history monitoring unit monitors a movement locus, a stage face cumulative irradiation dose calculation unit calculates cumulative irradiation dose distribution data, a stage face imaging range calculation unit calculates a stage face imaging range of the X-ray detector, and a dose distribution image display control unit extracts the cumulative irradiation dose distribution data in an imaging range and displays an image thereof.
Abstract:
In order to enable the computation of a process window including an arbitrary exposure condition, the present invention comprises: a contour data extraction means for extracting contour data from captured images of a plurality of circuit patterns formed by altering exposure conditions for identical design layouts; a shape variation measurement means for measuring, on the basis of the plurality of sets of extracted contour data, the amount of shape deformation at each edge or local region of the circuit patterns; a variation model computation means for computing, on the basis of the measured amount of shape deformation, a variation model for the contour data of a circuit pattern or a shape corresponding to a prescribed exposure condition; and a process window computation means using the variation model to estimate the amount of shape variation of a circuit pattern or a shape corresponding to an arbitrary exposure condition with respect to a circuit pattern or a shape corresponding to an exposure condition specified by a reference exposure condition and compute a process window on the basis of the estimated amount of shape variation.
Abstract:
A radiation image acquisition system of an aspect of the present invention includes a radiation source emitting radiation toward an object, a holding unit holding the object, a wavelength conversion member generating scintillation light in response to incidence of the radiation emitted from the radiation source and transmitted through the object, a first imaging means condensing and imaging scintillation light emitted from an incidence surface of the radiation of the wavelength conversion member, a second imaging means condensing and imaging scintillation light emitted from a surface opposite to the incidence surface of the wavelength conversion member, a holding unit position adjusting means adjusting the position of the holding unit between the radiation source and the wavelength conversion member, and an imaging position adjusting means adjusting the position of the first imaging means.
Abstract:
A method and a system for bump's inspection are disclosed. The inspection done by comparing the volume of the bump's outside contour and the volume the solid materials from which the bump is made and/or analyzing the bump's solid materials ratio. Principally, the inspection id done by preparing an empiric reference table of the emitted energy received from the solid materials, from which a reference proper bump with a given volume is comprised, using ED-XRF (Energy-Dispersive-X-ray-Fluorescence analysis) analyze; obtaining a first calculated volume of the bump, using a 3D image-processing method; adapting the reference table according to the difference between the given volume and the first calculated volume of the bump; performing a second volume calculation of the bump by applying ED-XRF technology. The difference between the first and second volume calculations and the solid material combination are used to inspect the bump.
Abstract:
A projection-based x-ray imaging system combines projection magnification and optical magnification in order to ease constraints on source spot size, while improving imaging system footprint and efficiency. The system enables tomographic imaging of the sample especially in a proximity mode where the same is held in close proximity to the scintillator. In this case, a sample holder is provided that can rotate the sample. Further, a z-axis motion stage is also provided that is used to control distance between the sample and the scintillator.
Abstract:
The X-ray inspection device and the X-ray inspection method according to the present invention are configured to hold an object to be inspected irradiated with an X-ray from an X-ray irradiation device, uses a swinging device for performing swinging motion of tilting the object to be inspected at an arbitrary angle and in an arbitrary direction, images the X-ray that passes through the object to be inspected in an X-ray detection device and extracts data of a desired cross section from the X-ray image of the X-ray detection device in a control device.
Abstract:
A sample holder for holding a sample during an X-ray imaging process includes a sample placement surface on which the sample is placed for positioning the sample in a depth direction of the sample holder. The sample holder also includes a first alignment portion for aligning the sample in a width direction of the sample holder, and a second alignment portion for aligning the sample in a height direction of the sample holder.
Abstract:
A pattern-measuring apparatus and a semiconductor-measuring system are provided which are able to obtain an evaluation result for suitably selecting processing with respect to a semiconductor device. In particular, there is proposed a pattern-measuring apparatus including an arithmetic device which compares a circuit pattern of an electronic device with a reference pattern, in which the arithmetic device classifies the circuit pattern in processing unit of the circuit pattern on the basis of a comparison of a measurement result between the circuit pattern and the reference pattern with at least two threshold values.
Abstract:
An X-ray fluorescence analyzer includes: a sample stage having a mounting surface on which a sample on which a sample is mounted is mounted; an X-ray source configured to irradiate the sample with primary X-rays and disposed immediately above an irradiation position of the sample; a detector configured to detect fluorescent X-rays emitted from the sample irradiated with the primary X-rays; and a shielding container configured to accommodate the sample stage, the X-ray source, and the detector and includes: a sample chamber configured to accommodate the sample stage; and a door provided at a top of the sample chamber and configured to open and close at least a front half of the sample chamber, wherein the X-ray source and the detector are disposed at a rear half of the sample chamber.
Abstract:
The purpose of the present invention is to provide an overlay error measuring device for correcting a pattern displacement other than an overlay error to thereby achieve high-precision overlay error measurement. To accomplish the abovementioned purpose, the present invention proposes an overlay error measuring device which measures a dimension between a plurality of patterns belonging to different layers using a signal obtained by a charged particle beam device, and when measuring the dimension, corrects an amount corresponding to a pattern shift due to an optical proximity effect and measures the dimension between the plurality of patterns.