Abstract:
An inspection system includes a TDI sensor that integrates amounts of secondary charged particles or electromagnetic waves along a predetermined direction at every timing at which a transfer clock is inputted and sequentially transfers the amounts of secondary charged particles or electromagnetic waves so integrated, and a deflector which deflects, based on a difference between an actual position and a target position of the inspection target, the secondary charged particles or electromagnetic waves directed towards the TDI sensor in a direction in which the difference is offset. The target position is set into something like a step-and-riser shape in which the target position is kept staying in the same position by a predetermined period of time that is equal to or shorter than a period of time from an input of the transfer clock to an input of the following transfer clock and thereafter rises by a predetermined distance.
Abstract:
An inspection apparatus capable of facilitating reduction in cost of the apparatus is provided. The inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held on a movable stage in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The inspection apparatus further includes: a linear motor that drives the movable stage; and a Helmholtz coil that causes a magnetic field for canceling a magnetic field caused by the linear motor when the movable stage is driven.
Abstract:
An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical systems; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
Abstract:
An inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The primary optical system includes a photoelectron generator having a photoelectronic surface. The base material of the photoelectronic surface is made of material having a higher thermal conductivity than the thermal conductivity of quartz. A central portion of the inspection object is provided with a central flat portion 390. The periphery of the central flat portion 390 is provided with peripheral flat portion 392 via a step 391. The periphery of the step 391 is provided with an electric field correction plate 400. A surface voltage equivalent to a surface voltage applied to the inspection object is applied to an electrode 401 on the electric field correction plate 400.
Abstract:
Provided is a method of adjusting an electron-beam irradiated area in an electron beam irradiation apparatus that deflects an electron beam with a deflector to irradiate an object with the electron beam, the method including: emitting an electron beam while changing an irradiation position on an adjustment plate by controlling the deflector in accordance with an electron beam irradiation recipe, the adjustment plate detecting a current corresponding to the emitted electron beam; acquiring a current value detected from the adjustment plate; forming image data corresponding to the acquired current value; determining whether the electron-beam irradiated area is appropriate based on the formed image data; and updating the electron beam irradiation recipe when the electron-beam irradiated area is determined not to be appropriate.
Abstract:
An inspection apparatus capable of facilitating reduction in cost of the apparatus is provided. The inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held on a movable stage in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The inspection apparatus further includes: a linear motor that drives the movable stage; and a Helmholtz coil that causes a magnetic field for canceling a magnetic field caused by the linear motor when the movable stage is driven.
Abstract:
An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical systems; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
Abstract:
An inspection system includes a TDI sensor that integrates amounts of secondary charged particles or electromagnetic waves along a predetermined direction at every timing at which a transfer clock is inputted and sequentially transfers the amounts of secondary charged particles or electromagnetic waves so integrated, and a deflector which deflects, based on a difference between an actual position and a target position of the inspection target, the secondary charged particles or electromagnetic waves directed towards the TDI sensor in a direction in which the difference is offset. The target position is set into something like a step-and-riser shape in which the target position is kept staying in the same position by a predetermined period of time that is equal to or shorter than a period of time from an input of the transfer clock to an input of the following transfer clock and thereafter rises by a predetermined distance.
Abstract:
An inspection apparatus by an electron beam comprises: an electron-optical device 70 having an electron-optical system for irradiating the object with a primary electron beam from an electron beam source, and a detector for detecting the secondary electron image projected by the electron-optical system; a stage system 50 for holding and moving the object relative to the electron-optical system; a mini-environment chamber 20 for supplying a clean gas to the object to prevent dust from contacting to the object; a working chamber 31 for accommodating the stage device, the working chamber being controllable so as to have a vacuum atmosphere; at least two loading chambers 41, 42 disposed between the mini-environment chamber and the working chamber, adapted to be independently controllable so as to have a vacuum atmosphere; and a loader 60 for transferring the object to the stage system through the loading chambers.
Abstract:
A system for further enhancing speed, i.e. improving throughput in a SEM-type inspection apparatus is provided. An inspection apparatus for inspecting a surface of a substrate produces a crossover from electrons emitted from an electron beam source 25•1, then forms an image under a desired magnification in the direction of a sample W to produce a crossover. When the crossover is passed, electrons as noises are removed from the crossover with an aperture, an adjustment is made so that the crossover becomes a parallel electron beam to irradiate the substrate in a desired sectional form. The electron beam is produced such that the unevenness of illuminance is 10% or less. Electrons emitted from the sample W are detected by a detector 25•11.