Abstract:
A physiologically stable fluorophore includes a terminal moiety including a terminal reactive site that reacts with a reactive group of a substrate; a stability linker covalently bonded to the terminal moiety; and a bridge moiety covalently bonded to the stability linker such that the stability linker is interposed through chemical bonds between the bridge moiety and the terminal moiety; and a fluorescent moiety covalently bonded to the bridge moiety of the redox moiety and including: an electron bandgap mediator that is covalently bonded to the bridge moiety; a coordinate center covalently bonded to the electron bandgap mediator and that forms a Zwitterionic member with an atom in the electron bandgap mediator; and a steric hinder bonded to the electron bandgap mediator to provide steric hindrance for protection of the coordinate center.
Abstract:
Non-ionic water-soluble cellulose ethers modified with 3-azido-2-hydroxypropyl groups bound via an ether link are provided having a molar degree of substitution MSAHP in the range from 0.001 to 0.50. Exemplary cellulose ethers are alkyl cell doses, including methyl, hydroxyalkyl (e.g. hydroxyethyl hydroxypropyl) or alkylhydroxyalkyl cellulose (e.g. methylhydroxyethyl). Reaction products with alkyne compounds are also provided, resulting in a terminal alkyne group. The reaction of azide with the alkyne proceeds as a 1,3-dipolar cycloaddition reaction, advantageously with Cu(I) or ruthenium catalysts. A multiplicity of cellulose ethers can be obtained from the conversion reaction. Variations in the macroscopic properties can be achieved by controlled modification, ranging from increased or reduced viscosity. The reaction, taking place within a few seconds, requires only minimal catalyst. Gel formation is reversible by adjustment of the pH such that a monophasic system (high-viscous fluid) arises again from a biphasic system (gel+low-viscous water phase).
Abstract:
An object of the invention is to provide cellulose fibers which can give a cellulose composite that renders high transparency, a reduction in linear expansion coefficient, and a high modulus of elasticity possible. The invention relates to: a process for producing modified cellulose fibers which includes a modification reaction step of reacting cellulose with an aromatic compound in an organic acid to thereby modify the cellulose with an aromatic-ring-containing substituent; cellulose fibers modified with aromatic-ring-containing substituent; a dispersion of the cellulose fibers; and a cellulose fiber composite obtained from the same.
Abstract:
An all-solid-state secondary battery includes a positive electrode active substance layer; a negative electrode active substance layer; and an inorganic solid electrolyte layer, in which at least one of the positive electrode active substance layer, the negative electrode active substance layer, or the inorganic solid electrolyte layer contains an inorganic solid electrolyte having conductivity of ions of metal belonging to Group 1 or 2 of the periodic table and a cellulose polymer.
Abstract:
A dialysis membrane for hemodialysis in the form of sheet films, tubular films, or hollow fibers is composed of a polysaccharide ether. The polysaccharide ether has a structure given by the formula ##STR1## in which cell is the skeleton of the unmodified cellulose molecule or of the chitin molecule, each with no hydroxyl groups, s is equal to 3 for the unmodified cellulose molecule and 2 for the chitin molecule, and x is the degree of etherification, which is in the range from 0.001 to 0.079, and R is an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, aryl, arylalkyl, arylalkenyl, and/or arylalkynyl group with 3 to 25 carbon atoms, and/or the radical of a heterocyclic compound with 3 to 25 carbon atoms, in which the carbon chain may be interrupted by oxygen or sulfur atoms.