Abstract:
Detection systems for mass spectrometry involving a combination of novel detector face coatings, repeller grid position and voltage, and in some embodiments employing tandem detectors, an interplate voltage. The mass spectra show improved sensitivities to high mass ions.
Abstract:
Methods and devices are disclosed for aligning a beam-propagation axis with the center of an aperture, especially an aperture configured to limit the aperture angle of the charged particle beam. In an exemplary method, an alignment-measurement aperture is provided at an imaging plane of a charged-particle-beam (CPB) optical system, and a beam detector is downstream of the alignment-measurement aperture. A scanning deflector is energized to cause the beam to be scanned in two dimensions, transverse to an optical axis, over the aperture. Meanwhile, the beam detector obtains an image of beam intensity in the two dimensions. In the image a maximum-intensity point is identified, corresponding to the propagation axis. Based on the two-dimensional image, the beam is deflected as required to align the propagation axis with the aperture center.
Abstract:
A photomask repair method including scanning an electron beam across a main surface of the photomask, thereby producing a pattern image of the photomask, identifying the position of a defective portion from the pattern image thus produced, and applying an electron beam to a region to be etched including a defective portion under an atmosphere of a gas capable of performing a chemical etching of a film material forming the photomask pattern, thereby removing a defect. In this method, the electron beam to be applied to the region to be etched is a shaped beam. The electron beam is set such that the side of the electron beam is applied in parallel to a borderline between a non-defective pattern and the defect.
Abstract:
A charged-particle beam exposure apparatus for exposing a member to be exposed to a charged particle beam with a pattern includes memories (902-905) for storing a plurality of control data for controlling reference dose data of the charged particle beam in accordance with the incident position of the charged particle beam on the member to be exposed, a selector (907) for selecting any one of the plurality of control data stored in the memories, and an exposure unit for controlling the reference dose data of the charged particle beam for each irradiation position on the basis of the control data selected by the selector, thereby exposing the member to be exposed with the pattern. The charged-particle beam exposure apparatus rapidly performs proper proximity effect correction to expose the member to be exposed with the pattern.
Abstract:
Hollow-beam apertures and methods for using same are disclosed, especially for achieving alignment of the beam center with the center of the hollow-beam aperture. The hollow-beam apertures define beam-transmissive portions (e.g., through-holes) that form a hollow beam propagating downstream of the hollow-beam aperture. Also included is a relatively thick region that causes absorption of at least a portion of the incident beam and may also cause localized scattering of the beam. Absorption of charged particles generates an electrical current that can be measured. From such current measurements accompanying controlled displacement of the incident beam, a measurement of the lateral beam-intensity distribution can be obtained. I.e., the current typically is maximal whenever the beam center is aligned with the center of the hollow-beam aperture. Lateral beam adjustment can be achieved using an aligner (deflector assembly).
Abstract:
Charged-particle-beam (CPB) microlithography apparatus are disclosed that do not require installation in a magnetically shielded room, and that exhibit improved attenuation of the incursion of magnetic fields, originating in linear motors used to drive motions of the reticle and substrate stages, to the charged particle beam. The illumination-optical and projection-optical systems are enclosed in respective columns made of a thick ferromagnetic material. The reticle and substrate chambers are similarly constructed. Consequently, there is very low incursion of external magnetic fields to the beam in the columns. The reticle and substrate chambers include partition shields, each having a multi-layer construction with alternating layers of ferromagnetic material sandwiched with layers of non-magnetic material, attached via non-magnetic material to the respective chambers. The partition shields prevent magnetic fields from the respective linear motors from reaching the beam inside the columns.
Abstract:
The invention relates to an apparatus for generating a plurality of charged particle beamlets, comprising a charged particle source for generating a diverging charged particle beam, a converging means for refracting said diverging charged particle beam and a lens array comprising a plurality of lenses, wherein said lens array is located between said charged particle source and said converging means. In this way, it is possible to reduce aberrations of the converging means.
Abstract:
The invention pertains to a direct write lithography system comprising: A converter comprising an array of light controllable electron sources, each field emitter being arranged for converting light into an electron beam, the field emitters having an element distance between each two adjacent field emitters, each field emitter having an activation area; A plurality of individually controllable light sources, each light source arranged for activating one field emitter; Controller means for controlling each light source individually; Focussing means for focussing each electron beam from the field emitters With a diameter smaller than the diameter of a light source on an object plane.
Abstract:
An apparatus is provided for one-dimensional magnetic scanning or switching of a charged particle beam. The apparatus can be extended to two dimensions at the cost of added complexity.
Abstract:
An apparatus includes: a rasterizer which rasterizes a surface of the substrate into pixels and outputs gray level values, where the gray level values specify a proportion of a pixel that overlaps with the pattern; a buffer coupled to receive and store the gray level values from the rasterizer; a flash converter coupled to receive the gray level values from the buffer, where the flash converter outputs shape data that define a flash field; a dose value circuitry coupled to the rasterizer, where the dose value circuitry computes dose values associated with the shape data; a converter coupled to receive the shape data from the flash converter and associated dose values from the dose value circuitry, where the converter outputs signals that specify a shape of the flash field, duration of the flash field, and a position of the flash field on the substrate; and a charged particle beam column coupled to receive the signals from the converter, and which generates the flash field as specified by the signals from the converter.