摘要:
The present disclosure relates to a method for quadrature error correction using a frequency divider circuit. The method comprises delaying input of data to master input terminals and/or slave input terminals of the frequency divider circuit for correcting a quadrature error between the in-phase and quadrature-phase output signals.
摘要:
Disclosed examples include frequency divider circuits, comprising an even number 4 or more differential delay circuits coupled in a cascade ring configuration of a configurable length N, with N−K of the N delay circuits providing an inverted polarity output signal to a succeeding delay circuit in the cascade ring configuration to control an amount of overlap between phase shifted clock signals from the delay circuits.
摘要:
A regenerative frequency divider comprising an in-phase mixer circuit and a phase-shifted mixer circuit. At least one switching device of the in-phase mixer circuit is of a smaller scale than a corresponding switching device of the transconductance component of the in-phase mixer circuit. In some examples, at least one switching device within an input switching stage of the regenerative frequency divider forming part of the phase-shifted mixer circuit is of a smaller scale than a respective corresponding switching device within the input switching stage forming part of the in-phase mixer circuit. In some further examples, all switching devices within the phase-shifted mixer circuit are of a small scale than respective corresponding switching devices within the in-phase mixer circuit.
摘要:
A fast latch including: a NAND stage adapted to receive a clock signal and a data input signal; a clocked inverter stage, a first input of the clocked inverter stage coupled to the output of the NAND stage and a second input of the clocked inverter stage coupled to the clock signal; a first inverter stage, a first input of the first inverter stage coupled to an output of the clocked inverter and a second input of the first inverter stage coupled to a reset signal; and a second inverter stage, having an output, an input of the second inverter stage coupled to an output of the first inverter stage. The fast latch is suitable for use in frequency divider circuits also described. A homologue of frequency dividers using the fast latch, a unique 3/4 divider and a 2 divider not using the fast latch are also disclosed.
摘要:
A dividing circuit comprises, connected in a ring, a plurality M of transistor stages, where M is an even integer. Each transistor stage comprises an input node, a clock node and an output node. A tri-state inverter stage has an input node connected to the output node of a preceding transistor stage in the ring, an enable node connected to the clock nodes of the transistor stages, and an output node connected to the input node of a subsequent transistor stage in the ring. Each transistor stage comprises a first pair of transistors of a first conductivity type connected in series between a first voltage level and an output node, and a second pair of transistors of a second conductivity type connected in series between a second voltage level and said output node, wherein control nodes of a first transistor of each said transistor pair are connected together to provide the input node for the stage, and control nodes of a second transistor of each said transistor pair are connected together to provide the clock node for the stage, whereby when an input clock signal is applied to the clock nodes of the transistor stages, an output signal is generated at the output node of the tri-state inverter in which each cycle represents M cycles of the input clock signal.
摘要:
A frequency dividing circuit includes a first inverter circuit supplied with a first frequency-divided signal, a second inverter circuit supplied with a second frequency-divided signal which has a complementary relationship to the first frequency-divided signal, and a first pair of push-pull circuits. There are also provided a first switch circuit performing a first switching operation in response to a first input signal and selectively supplying output signals of the first and second inverter circuits to the first pair of push-pull circuits so that one of the first pair of push-pull circuits performs a pull-up operation when the other one thereof performs a pull-down operation. Further, there are provided a second pair of push-pull circuits, and a second switch circuit performing a second switching operation in response to a second input signal which has a complementary relationship to the first input signal and selectively supplying output signals of the first pair of push-pull circuits to the second pair of push-pull circuits so that one of the second pair of push-pull circuits performs a pull-up operation when the other one thereof performs a pull-down operation. The first and second frequency-divided signals are output from the second pair of push-pull circuits.
摘要:
A frequency divider receives a first frequency signal and at least one clock signal of a sub-multiple of the first frequency. The first frequency signal charges a storage terminal once each first frequency cycle and the sub-multiple frequency signal discharges the storage temrinal once each sub-multiple frequency cycle. The discharged storage terminal sets the frequency divider output which is reset by the first frequency signal when the storage terminal is discharged. The sub-multiple frequency clock signal is employed to control the storage terminal instead of a feedback path from the output to increase the operating frequency of the divider.
摘要:
An electronic frequency divider circuit, particularly well-adapted to implement odd-number counters, comprising a multiplicity of switched-latch stages, and in the case of an odd-number counter, further including a bypass circuit stage. Each switched-latch stage comprises a first transmission gate and two inverters configured as a latch circuit, and a second transmission gate for coupling the latch circuit to a previous stage. Even-number divider circuits may be implemented using only pairs of switched-latch stages without the bypass circuit.
摘要:
A digital clock generator circuit including a series of inverters connected in cascade with the output of the final stage connected to the input of the first stage in a ring counter fashion. Each inverter includes a first circuit to precharge a node, a second circuit to discharge a node upon occurrence of a selected input signal and a third circuit connected to isolate the node from the circuitry output during the precharge interval. The output of the counter is the output of the final stage. The inverter circuits allow for a low power digital counter by allowing a P-MOS or N-MOS fabrication of devices that do not require continuous power.
摘要:
Dynamic logic counting circuits are disclosed using recirculating latched memory stages having parallel shift circuits operating in synchronism with the latch circuits to control stepping of the counts. An alternate embodiment employs steering circuit controlled subcounters, each subcounter having a parallel shift circuit operating in synchronism with its respective subcounter to step the next succeeding subcounter when its respective subcounter reaches a predetermined count such as 9 for a binary coded decimal counter or 15 for a binary counter.