摘要:
The present disclosure relates to the extraction of lithium from liquid resources such as natural and synthetic brines, leachate solutions from clays and minerals, and recycled products.
摘要:
The present invention relates to recovery of lithium from liquid resources to produce lithium solutions while limiting impurity precipitation in the lithium solutions.
摘要:
The present disclosure relates to the extraction of lithium from liquid resources such as natural and synthetic brines, leachate solutions from clays and minerals, and recycled products.
摘要:
Provided is a method for producing a lithium-containing solution that allows increasing a content rate of lithium in a solution after an eluting step, and suppressing an amount of an eluted solution used in a process after the eluting step, thus suppressing production cost of lithium. A method for producing a lithium-containing solution includes an adsorption step of bringing a lithium adsorbent obtained from lithium manganese oxide in contact with a low lithium-containing solution to obtain post-adsorption lithium manganese oxide, an eluting step of bringing the post-adsorption lithium manganese oxide in contact with an acid-containing solution to obtain an eluted solution, and a manganese oxidation step of oxidating manganese to obtain a lithium-containing solution with a suppressed manganese concentration. The adsorption step, the eluting step, and the manganese oxidation step are performed in this order, and the acid-containing solution includes the eluted solution with acid added. The method allows the usage amount of the acid in the eluting step to be suppressed, the content rate of lithium in the eluted solution after the eluting step to be increased, and thus the production cost of the lithium-containing solution to be suppressed.
摘要:
A process for removing Sr2+ toxins from bodily fluids is disclosed. The process involves contacting the bodily fluid with an ion exchanger to remove the metal toxins in the bodily fluid, including blood and gastrointestinal fluid. Alternatively, blood can be contacted with a dialysis solution which is then contacted with the ion exchanger. The ion exchangers are represented by the following empirical formula: AmZraTibSncMdSixOy. A composition comprising the above ion exchange compositions in combination with bodily fluids or dialysis solution is also disclosed. The ion exchange compositions may be supported by porous networks of biocompatible polymers such as carbohydrates or proteins.
摘要:
The present invention relates to recovery of lithium from liquid resources to produce lithium solutions while limiting impurity precipitation in the lithium solutions.
摘要:
The present invention relates to the field of solid materials for adsorption of lithium. In particular, the present invention relates to a novel method for preparing a crystallized and shaped solid material, preferably as extrudates, of formula LiXx.2Al(OH)3, nH2O with n being comprised between 0.01 and 10, x being equal to 1 when X is an anion selected from among chloride, hydroxide and nitrate anions, and x being equal to 0.5 when X is an anion selected from among sulfate and carbonate anions, comprising a step a) for precipitation of boehmite under specific temperature and pH conditions, at least one shaping step, preferably by extrusion, said method also comprising a final hydrothermal treatment step, the whole giving the possibility of increasing the adsorption capacity for lithium as well as the adsorption kinetics of the materials obtained as compared with the materials of the prior art when the latter is used in a method for extracting the lithium from saline solutions.
摘要:
This invention relates to a method for preparing a lithium activated alumina intercalate solid by contacting a three-dimensional activated alumina with a lithium salt under conditions sufficient to infuse lithium salts into activated alumina for the selective extraction and recovery of lithium from lithium containing solutions, including brines.
摘要:
A method of sorbent dialysis is provided for enhanced removal of uremic toxins, such as toxic anions and/or organic solutes, from spent dialysate. More highly adsorbable zirconium polymeric complexes of these anions and/or organic solutes can be initially formed in spent dialysate by treatment with zirconium salt solution or other zirconium cation source, and then removed with adsorbent to provide purified or regenerated dialysate. Sorbent dialysis systems for detoxifying spent dialysate containing toxic anions and organic solutes are also provided.
摘要:
A method for preparing a crystallized solid material of formula LiCl.2Al(OH)3.nH2O with n being comprised between 0.01 and 10, includes mixing in an aqueous medium, at least one source of alumina and at least one source of lithium in order to obtain a suspension, filtering the resulting suspension obtained for obtaining a slurry, followed by drying the obtained slurry and shaping the dried slurry after the drying to obtain a shaped solid material. The shaping is carried out in absence of a binder followed by drying and a hydrothermal treatment to obtain the shaped crystallized solid material of formula LiCl.2Al(OH)3.nH2O. A method for extracting lithium from saline solutions uses the thereby prepared material.