Manufacturing method of galvannealed steel sheet

    公开(公告)号:US11591685B2

    公开(公告)日:2023-02-28

    申请号:US16759275

    申请日:2018-11-13

    摘要: [Object] What is provided is a manufacturing method of a galvannealed steel sheet capable of further promoting alloying of zinc plating with the steel sheet.
    [Resolution Means] A manufacturing method of a galvannealed steel sheet, including: forming on a surface of a steel sheet after hot rolling and pickling which contains, by mass %, C: 0.001% to 0.350%, Si: 0.001% to 2.500% or P: 0.001% to 0.100%, or combination thereof, Mn: 0.10% to 3.00%, S: 0.001% to 0.010%, N: 0.0010% to 0.0065%, and sol. Al: 0.001% to 0.800% with a remainder being Fe and impurities, grooves having an opening surface width of 10 μm to 25 μm and a depth of 10 μm to 30 μm at intervals of 20 μm to 500 μm; cold rolling the steel sheet at a rolling reduction of 30% or more; reduction annealing the steel sheet after the cold rolling; immersing the steel sheet in a hot-dip galvanizing bath containing 0.10 mass % to 0.20 mass % of Al with a remainder consisting of Zn and optional components, and adhering a hot-dip galvanized layer to the surface of the steel sheet; and heating the steel sheet to which the hot-dip galvanized layer is adhered, and alloying the steel sheet with the hot-dip galvanized layer.

    HOT-DIP Zn-Al-Mg-BASED ALLOY-PLATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE OF PROCESSED PORTION, AND METHOD FOR MANUFACTURING SAME

    公开(公告)号:US20230021399A1

    公开(公告)日:2023-01-26

    申请号:US17787019

    申请日:2020-12-02

    申请人: POSCO

    IPC分类号: C23C2/06 C23C2/28

    摘要: An exemplary embodiment in the present disclosure provides a hot-dip Zn—Al—Mg-based alloy-plated steel material having excellent corrosion resistance in a processed portion, and a method for manufacturing the same. The steel material includes: an iron substrate; and a hot-dip alloy-plated layer formed on the iron substrate, wherein the hot-dip alloy-plated layer contains, by wt %, more than 8% to 25% of Al, more than 4% to 12% of Mg, and a balance of Zn and inevitable impurities, a fraction of a MgZn2 phase in the hot-dip alloy-plated layer is 10 to 45 area %, cracks are formed inside the MgZn2 phase, and the number of cracks present per 100 μm in a direction perpendicular to a thickness direction of a steel sheet in a field of view in which the cracks are observed based on a cross section in the thickness direction of the steel sheet is 3 to 80.

    HOT-DIPPED GALVANIZED STEEL SHEET HAVING EXCELLENT BENDING WORKABILITY AND CORROSION RESISTANCE AND MANUFACTURING METHOD THEREFOR

    公开(公告)号:US20230019786A1

    公开(公告)日:2023-01-19

    申请号:US17782401

    申请日:2020-12-01

    申请人: POSCO

    摘要: A hot-dipped galvanized steel sheet having excellent bending workability and corrosion resistance and a manufacturing method therefor are provided. A hot-dipped galvanized steel sheet of the present invention comprises: a base steel sheet; a Zn—Mg—Al based plating layer provided on at least one surface of the base steel sheet and including, in wt %, with respect to components other than iron (Fe) diffused from the base steel sheet, 5.1 to 25% of Al and 4.0-10% of Mg, and the remainder of Zn and other inevitable impurities; and an interfacial alloy layer having a Fe—Al—Zn composition formed between the base steel sheet and the plating layer, wherein the interfacial alloy layer has a thickness of 0.5-2 μm and has a dendritic form, the Zn—Mg—Al based plating layer has a Zn—Al—MgZn2 ternary eutectic structure, a Zn—MgZn2 binary eutectic structure, and a structure including one or more of an Al single-phase structure having solid-solubilized Zn and a Zn single-phase structure, and agglomerated Al is included in a MgZn2 structure.

    COATED STEEL MATERIAL
    10.
    发明申请

    公开(公告)号:US20220371302A1

    公开(公告)日:2022-11-24

    申请号:US17771012

    申请日:2020-10-16

    摘要: A coated steel material including: a base steel, and a coating layer containing a Zn—Al—Mg alloy layer disposed on a surface of the base steel, wherein the coating layer has a predetermined chemical composition, and, in a backscattered electron image of the Zn—Al—Mg alloy layer that is obtained at a time of observing the surface of the Zn—Al—Mg alloy layer after polishing to ½ of the layer thickness, under a scanning electron microscope at a magnification of 100×, Al crystals are present, and the average value of the cumulative circumferential length of the Al crystals is 88 to 195 mm/mm2.