Abstract:
Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface; and a die embedded in the package substrate, wherein the die has a first surface and an opposing second surface, the die has first conductive contacts at the first surface and second conductive contacts at the second surface, and the first conductive contacts and the second conductive contacts are electrically coupled to conductive pathways in the package substrate.
Abstract:
A device package and a method of forming the device package are described. The device package includes one or more dies disposed on a first substrate. The device packages further includes one or more interconnects vertically disposed on the first substrate, and a mold layer disposed over and around the first die, the one or more interconnects, and the first substrate. The device package has a second die disposed on a second substrate, wherein the first substrate is electrically coupled to the second substrate with the one or more interconnects, and wherein the one or more interconnects are directly disposed on at least one of a top surface of the first substrate and a bottom surface of the second substrate without an adhesive layer. The device package may include one or more interconnects having one or more different thicknesses or heights at different locations on the first substrate.
Abstract:
The present invention relates to a system for surface mount heat sinks for printed circuit boards (PCB) and a method for assembling a PCB having said heat sinks. The present invention more particularly relates to a printed circuit board assembly comprising a printed circuit board (1), a circuit unit (3) and a heat sink (4), said circuit unit (3) being attached to said printed circuit board (1) in a manner to be interposed between said printed circuit board (1) and said heat sink (4).
Abstract:
Semiconductor packages having a sealant bridge between an integrated heat spreader and a package substrate are described. In an embodiment, a semiconductor package includes a sealant bridge anchoring the integrated heat spreader to the package substrate at locations within an overhang gap laterally between a semiconductor die and a sidewall of the integrated heat spreader. The sealant bridge extends between a top wall of the integrated heat spreader and a die side component, such as a functional electronic component or a non-functional component, or a satellite chip on the package substrate. The sealant bridge modulates warpage or stress in thermal interface material joints to reduce thermal degradation of the semiconductor package.
Abstract:
A thermal interface may include a wired network made of a first TIM, and a second TIM surrounding the wired network. A heat spreader lid may include a wired network attached to an inner surface of the heat spreader lid. An IC package may include a heat spreader lid placed over a first electronic component and a second electronic component. A first thermal interface may be formed between the first electronic component and the inner surface of the heat spreader lid, and a second thermal interface may be formed between the second electronic component and the inner surface of the heat spreader lid. The first thermal interface may include a wired network of a first TIM surrounded by a second TIM, while the second thermal interface may include the second TIM, without a wired network of the first TIM. Other embodiments may be described and/or claimed.
Abstract:
Modular assemblies for thermal management are provided. Modularity permits or facilitates scalable thermal performance with respect to power dissipation demands. Modularity also permits retrofitting a deployed cooling system based at least on a current power dissipation requirement. In some embodiments, a modular assembly can be reversibly reconfigured in order to adjust cooling capacity and fulfill a defined power dissipation target. In some embodiments, a modular assembly can include a liquid-cooled pedestal and multiple liquid-cooled attachment members that can be reversibly coupled to or reversibly decoupled from the liquid-cooled pedestal based at least on a power dissipation condition and/or a change thereof of a dissipative electronic component. The reversible coupling and reversible decoupling of the attachment members can permit or otherwise facilitate reversibly adjusting the heat transfer between the modular assembly and the dissipative electronic component. Scalability of thermal performance of the modular assembly can be achieved, at least in part, by the addition of liquid-cooled attachment members.