Abstract:
A contact lens having a thin silicon chip integrated therein is provided along with methods for assembling the silicon chip within the contact lens. In an aspect, a method includes creating a plurality of lens contact pads on a lens substrate and creating a plurality of chip contact pads on a chip. The method further involves applying assembly bonding material to the each of the plurality of lens contact pads or chip contact pads, aligning the plurality of lens contact pads with the plurality of chip contact pads, bonding the chip to the lens substrate via the assembly bonding material using flip chip bonding, and forming a contact lens with the lens substrate.
Abstract:
The present disclosure relates to devices and processes for fabricating a multi-component optical system. A device is an integral mold comprising an attachment portion and a cup portion having a cavity, and the mold further comprises a first optical component. The cavity of the mold contains additional optical components to form a multi-component optical system blank. Another device is a multi-component optical system blank. A process for fabricating a multi-component optical system blank comprises providing an integral mold comprising a first optical component, adding at least a second optical component, shaping the mold after addition of an optical component, and shaping the resultant blank into an optical system. A further device is a multi-component optical system produced in a process disclosed herein.
Abstract:
The present disclosure relates generally to multicomponent optical devices having a space within the device. In various embodiments, an optical device comprises a first posterior component having an anterior surface, a posterior support component, and an anterior component having a posterior surface. An optical device can also comprise an anterior skirt. The first posterior component and the anterior skirt can comprise gas-permeable optical materials. An optical device also comprises a primary space between the posterior surface and the anterior surface, with the primary space configured to permit diffusion of a gas from a perimeter of the primary space through the space and across the anterior surface of the first posterior component. A method of forming a multicomponent optical device having a space is also provided.
Abstract:
L'invention concerne un procédé de fabrication d'une lentille de contact hybride comportant: - une étape de fourniture d'un palet hydrophile (100), - une étape de fourniture d'un palet rigide (200), - une étape d'hydratation du palet hydrophile (100), - une étape de dépose d'un élément adhésif (202) sur une face du palet rigide, - une étape de collage du palet hydrophile (100) ainsi hydraté contre ladite face du palet rigide, - une étape de séchage des deux palets (100) ainsi collés, et - une étape de taille des deux palets (100) ainsi collés et séchés.
Abstract:
Disclosed are methods, materials and systems for producing contact lenses and contact lenses produced using said methods, materials and systems. According to some embodiments, a contact lens produced by said methods, materials and systems includes an extra-ocular indicator ("EOI") adapted to alter in color upon removal of said lens from an eye. The EOI may be at least partially composed of a pigment adapted to become relatively more visible when the contact lens is outside an eye than when the contact lens is placed in an eye.
Abstract:
A hybrid contact lens comprises a substantially rigid zone having a base curve and a substantially flexible hydrophilic portion coupled to the substantially rigid zone, wherein the substantially flexible portion has one of a plurality of radii.
Abstract:
A contact lens, including a central portion formed from a flexible or soft oxygen permeable material and a peripheral portion formed from a substantially rigid material. The central portion and the peripheral portion are coupled to each other at a coupling portion.
Abstract:
A lens comprises an internal cavity structure formed by dissolution of a soluble insert material. The internal soluble material may dissolve through a body of a lens such as a contact lens in order to form the cavity within the contact lens. The cavity within the lens can be shaped in many ways, and corresponds to the shape of the dissolved material, such that many internal cavity shapes can be readily fabricated within the contact lens. The insert can be placed in a mold with a pre-polymer material, and the pre-polymer material cured with the insert placed in the mold to form the lens body. The polymerized polymer may comprise a low expansion polymer in order to inhibit expansion of the lens when hydrated. The polymer may comprise a hydrogel when hydrated. The soft contact lens material comprises a sufficient amount of cross-linking to provide structure to the lens and shape the cavity.
Abstract:
The present invention relates to copolymers made from a polymerization mixture comprising (a) one or more polymerizable monomers, which monomers are characterized as having at least one vinylic group and not containing an amino acid residue, (b) one or more not-functionalized side chain-linked amino acids, (c) one or more functionalized side chain-linked amino acids, (d) a free radical initiator and, optionally, (e) a chain-transfer-agent. It also relates to block copolymers comprising the same monomers. The invention also encompasses silicone hydrogel contact lenses coated with or comprising the latter copolymers and block copolymers as well methods for introducing the copolymers and block copolymers into silicone hydrogel contact lenses.
Abstract:
The invention is related to a method for producing silicone hydrogel contact lenses with having a stable coating thereon. A method of the invention comprises a water-based coating process (step) for forming a relatively-stable base coating of a homo- or copolymer of acrylic acid or C1-C3 alkylacrylic acid onto a silicone hydrogel contact lens made from a lens formulation comprising from about 35% to about 60% by weight of N-vinylpyrrolidone.