Abstract:
A low energy nuclear thermoelectric system for a vehicle which provides a cost-effective and sustainable means of transportation for long operation range with zero emission using an onboard low energy nuclear reaction thermal generator. The present invention generally includes a thermal generator within a thermal enclosure case, an energy conversion system linked with the thermal generator, an energy storage system linked with the energy conversion system, a cooling system and a central control system. The thermal generator reacts nickel powder with hydrogen within a reactor chamber to produce heat. The heat is then transferred to the energy conversion system to be converted into electricity for storage in the energy storage system. The cooling system provides cooling for the various components of the present invention and the control system regulates its overall operation. The present invention may be utilized to power a vehicle in an efficient, sustainable and cost-effective manner.
Abstract:
An aircraft, comprising: a wing; a fuselage coupled to the wing; an engine (34) coupled to at least one of the fuselage and the wing; an electrical load (20) associated with the aircraft during flight operations; a generator (32) coupled to the engine and configured to generate electrical power for the electrical load; a conductor (38) electrically disposed between the electrical load and the generator; a conduit (46) configured to house the conductor; and a dielectric gas (44) disposed in the conduit; wherein the conduit (46) is configured to envelop the conductor (38) in the dielectric gas (44).
Abstract:
In order to permit an increased torque for a given volume in an electric machine (12) which is suitable for purposes of use in the aircraft industry with large torques and high rotational speeds, the invention provides an electric machine, (10) having a flux switching machine unit (12) and a permanent magnet arrangement (14) which extends in the circumferential direction and which is embodied as a Halbach array arrangement (42).
Abstract:
A battery charging system of a vehicle and method for charging a low-voltage battery from a high-voltage battery or an external power supply are provided, where the battery charging system includes an on-board charger (OBC) to charge the low voltage battery either from the high-voltage battery or from the external power supply, and the OBC is powered either by the low-voltage battery or the external power supply.
Abstract:
Erläutert wird eine Ladestation (12): - mit einer Steuereinheit (20), - mit einer Erfassungseinheit zum Erfassen des Ausfalls einer Versorgungsspannung eines Energieversorgungsnetzes (24), wobei die Erfassungseinheit an die Steuereinheit (20) gekoppelt ist, - und mit einer Sendeeinheit zum Senden einer Nachricht oder eines Signals an ein Elektro-Transportmittel (14), wobei die Sendeeinheit an die Steuereinheit (20) gekoppelt ist und wobei die Nachricht oder das Signal ein Liefern von elektrischer Energie aus einem Traktionsakku des Transportmittels (14) zu der Ladestation (12) betrifft.
Abstract:
L'objet de l'invention est un système de recharge de batteries embarquées (6) dans un aéronef à propulsion électrique (10) caractérisé en ce qu'il comporte un aéronef chargeur (1), des moyens (2, 3a, 3b, 4) de connexion électrique temporaire de l'aéronef chargeur vers l'aéronef à propulsion électrique et un dispositif de régulation de charge (5) dans l'aéronef à propulsion électrique.
Abstract:
Some embodiments include a kit for increasing endurance of a battery-powered unmanned aerial vehicle (UAV) by incorporating flexible solar cells or applying flexible solar cells on a surface of a UAV or on a surface of a component of a UAV. The kit further include a power conditioning system configured to operate the solar cells within a desired power range and configured to provide power having a voltage compatible with an electrical system of the UAV.
Abstract:
A transmission for a motor vehicle is provided. The transmission is a plurality of switches that reconfigurably interconnects constrained energy sources through switch settings. In one embodiment, the energy sources are batteries or fuel cells for an electric or hybrid motor vehicle. The transmission is in communication with a controller that receives energy from the plurality of energy sources and regulates output energy. In one embodiment the controller is a pulse width modulation controller and may also be an inverter and/or converter. A device for converting the output energy of the controller into one of a force or a rate is provided. In one embodiment the device is an electric motor.
Abstract:
In some embodiments, a control system for electric vehicle charging stations and method of using the same as disclosed herein. Other embodiments of related systems and methods are also disclosed.
Abstract:
A system and method for powering of a vehicle is disclosed. In accordance with embodiments of the present disclosure, a powering assembly may include an axle, a wheel coupled to the axle, and at least one secondary coil winding affixed to the wheel. The wheel may be configured to rotate about the axle in a plane substantially perpendicular to an axis of the axle. The at least one secondary coil may be configured such that when the wheel is proximate to an embedded conductor embedded in a roadway and carrying a first electrical current, a magnetic field induced by the first electrical current induces a second electrical current in the at least one secondary coil winding.