Abstract:
A vehicle having wheels for riding the vehicle over a carrier such as a road or rails, said vehicle having a battery and a generator connected thereto, said generator being arranged to generate electrical power for charging said battery, said generator being further mechanically connected to at least one of said wheels such that said wheel drives the rotor of said generator, characterized in that said generator is an asynchronous generator or a permanent magnet generator, wherein an AC/DC inverter/charger is connected between said generator and said battery for regulating the current and the voltage of the charging power to said battery.
Abstract:
A low energy nuclear thermoelectric system for a vehicle which provides a cost-effective and sustainable means of transportation for long operation range with zero emission using an onboard low energy nuclear reaction thermal generator. The present invention generally includes a thermal generator within a thermal enclosure case, an energy conversion system linked with the thermal generator, an energy storage system linked with the energy conversion system, a cooling system and a central control system. The thermal generator reacts nickel powder with hydrogen within a reactor chamber to produce heat. The heat is then transferred to the energy conversion system to be converted into electricity for storage in the energy storage system. The cooling system provides cooling for the various components of the present invention and the control system regulates its overall operation. The present invention may be utilized to power a vehicle in an efficient, sustainable and cost-effective manner.
Abstract:
Изобретение относится к газотурбинным двигателям локомотива, работающих на сжиженном природном газе. Газотурбинная установка содержит три вала давления. Вал высокого давления расположен над двумя валами низкого и среднего давления. На валу низкого давления установлен компрессор низкого давления с входным патрубком, соединенный валом с турбиной низкого давления и газовой связью через канал с турбиной среднего давления, на валу среднего давления установлена турбина среднего давления, соединенная валом с первым синхронным тяговым генератором и каналом с промежуточной камерой сгорания, на валу высокого давления установлен компрессор высокого давления, соединенный валом с турбиной высокого давления и каналом с основной камерой сгорания. Компрессор низкого давления снабжен поворотным входным направляющим аппаратом, приводимым от блока, на промежуточном холодильнике установлен перепускной клапан, в регенеративном теплообменнике размещены основные камеры сгорания, соединённые каналом с турбиной высокого давления, компрессор высокого давления соединён через вал и редуктор со стартёром, турбина высокого давления соединена валом со вторым синхронным тяговым генератором для возможности работы газотурбинной установки на холостом ходу и малых нагрузках только от вала высокого давления. Техническим результатом изобретения является значительное снижение расхода топлива на холостом ходу и на малых нагрузках газотурбинной установки, исключение на локомотиве вспомогательного дизель-генератора.
Abstract:
The present invention relates to a power generating system for attachment to a vehicle, comprising a generator unit; a rotatable ground engaging means adapted to be contactable with a ground surface, the rotatable ground engaging means being coupled to the generator unit through a transmission mechanism; and a rotatable ground engaging means support arrangement. The rotatable ground engaging means is mounted on the rotatable ground engaging means support arrangement and the rotatable ground engaging means support arrangement is configured such that substantially vertical motion of the rotatable ground engaging means is allowable when the rotatable ground engaging means is engaged with a ground surface.
Abstract:
An automated manual transmission system (1) including an input shaft (4), a clutch, an output shaft (6), and a gearbox enabling selection of different transmission ratios between the input shaft and the output shaft (6). An actuation mechanism (10) is operatively connected to the clutch and the gearbox to effect disengagement and re- engagement of the clutch and coordinated selection of the transmission ratios. A hybrid motor (14) is operably connected to the output shaft (6) and a control system (16) is operable to regulate the actuating mechanism in response to control inputs, to effect automatic gear changes. The hybrid motor (14) is responsive to the control system (16) to provide supplementary torque to the vehicle driveline when the clutch is disengaged, to reduce torque interruption in the driveline.
Abstract:
A high-performance hybrid vehicle using compressed air and electrical energy as the source of driving power provided with the parts shown below is provided, that is, (a) a first compressed air storage part; (b) a turbine type air engine which generates power by the compressed air; (c) a first power division part which divides the power; (d) a first dynamo connected to the first power division part; (e) a wheel actuator connected to the turbine type air engine; (f) an electric motor and a second dynamo which are connected to the wheel actuator; (g) an electrical storage part; (h) an air compression part connected to the turbine type air engine; (i) a second compressed air storage part connected to the air compression part; and (j) a second power division part connected to the wheel actuator, the second dynamo, and the air compression part.
Abstract:
One embodiment relates to a hybrid vehicle drive system for a vehicle including a first prime mover, a first prime mover driven transmission, a rechargeable power source, and a PTO. The hybrid vehicle drive system further includes a hydraulic motor in direct or indirect mechanical communication with the PTO and an electric motor in direct or indirect mechanical communication with the hydraulic motor. The electric motor can provide power to the prime mover driven transmission and receive power from the prime mover driven transmission through the PTO. The hydraulic motor can provide power to the prime mover driven transmission and receive power from the prime mover driven transmission through the PTO.
Abstract:
A system for generating electric power comprises an electrically driven air compression unit (10), a high-pressure storage tank (14) and a hydraulic system. The hydraulic system comprises a fluid reservoir (20), a pneumatically driven fluid pump (18) and a hydraulic motor (26), having a drive shaft (28) rotatably coupled to an electric generator (8). Initially a high-speed compression unit (10) is operated by an outside electric source. The air is compressed into the high-pressure storage tank (14) and controllably released into the pneumatically driven fluid pump (18), causing its operation. Hydraulic fluid being pressured from the fluid reservoir (20) into the hydraulic motor (26) causes the rotation of the motor drive shaft (28) and the electric generator (8). Electric power is generated. The outside electric source is removed. Part of the generated power is used to operate the compression unit (10) the other part of the power is used by a load.