Abstract:
Frangible firearm projectiles, firearm cartridges containing the same, and methods for forming the same. The firearm projectiles are formed from a compacted mixture of metal powders that includes zinc and iron powders and which may include an anti-sparking agent. The compacted mixture is heat treated for a time sufficient to form a plurality of discrete alloy domains within the compacted mixture. The frangible firearm projectile may be formed by a mechanism that includes vapor-phase diffusion bonding and oxidation of the metal powders and that does not include forming a liquid phase of any of the metal powders or utilizing a polymeric binder. A majority component of the frangible firearm projectile may be iron. One or more of zinc, bismuth, tin, copper, nickel, tungsten, boron, and/or alloys thereof may form a minority component of the frangible firearm projectile. The anti-sparking agent may include a borate, such as boric acid.
Abstract:
A method of manufacturing a fluid-handling component (12) includes forming a liner (30) via an additive manufacturing process and forming a body (28) about the liner via a powder compaction process. The body may be coupled to the liner via diffusion bonds during the powder compaction process. The fluid-handling component may be constructed for use in a mineral extraction system.
Abstract:
A method for manufacturing a fuel contacting component that facilitates reducing coke formation on at least one surface of the fuel contacting component is disclosed herein. The method includes applying a slurry composition including a powder including aluminum to the component surface, wherein the fuel contacting component is formed by an additive manufacturing process. The slum' composition is heat treated to diffuse the aluminum into the component surface. The heat treatment comprises forming a diffusion aluminide coating on the component surface, wherein the diffusion coating comprises a diffusion sublayer formed on the component surface and an additive sublayer formed on the diffusion sublayer. The method further comprises removing the additive sublayer of the diffusion aluminide coating with at least one aqueous solution such that the diffusion sublayer and the component surface are substantially unaffected, wherein the diffusion layer facilitates preventing coke formation on component surface.
Abstract:
According to the present invention, there are provided processes for preparing a porous composite material comprising a metal and a two-dimensional nanomaterial. In one aspect, the processes comprise the steps of: providing a powder comprising metal particles; heating the powder such that the metal particles fuse to form a porous scaffold; and forming a two-dimensional nanomaterial on a surface of the porous scaffold by chemical vapour deposition (CVD). Also provided are materials obtainable by the present processes, and products comprising said materials.
Abstract:
Verfahren zum Verbinden von Bauelementen, bei dem man eine Anordnung aus wenigstens zwei jeweils eine metallische Kontaktoberfläche aufweisenden Bauelementen und zwischen den Bauelementen angeordnetem metallischen Sintermittel in Form eines metallischen Festkörpers mit Metalloxidoberflächen bereitstellt und die Anordnung drucksintert, wobei Metalloxidoberflächen des metallischen Sintermittels mit den metallischen Kontaktoberflächen der Bauelemente jeweils eine gemeinsame Kontaktfläche bilden, und wobei (I) das Drucksintern in einer mindestens eine oxidierbare Verbindung enthaltenden Atmosphäre durchgeführt und/oder (II) die Metalloxidoberflächen vor Bildung der jeweiligen gemeinsamen Kontaktfläche mit mindestens einer oxidierbaren organischen Verbindung versehen werden.
Abstract:
A method for manufacturing a rotating assembly includes providing an impeller including a shaft and at least one blade. The method also includes providing a thrust plate configured to contact a bearing fluid. The method further includes brazing the thrust plate to the impeller.
Abstract:
Der Werkstoff mit mehrphasigem Gefüge umfassend wenigstens eine erste feste Phase und wenigstens eine zweite feste Phase, zeichnet sich dadurch aus, dass die erste Phase und die zweite Phase jeweils ein Metall, eine Metalllegierung, ein keramisches Material oder Kombinationen hiervon in Form eines Verbundwerkstoffs sind, die Phasen des Gefüges makroskopisch voneinander unterscheidbar sind, das mehrphasige Gefüge als Einlagerungsgefüge oder als dreidimensionales Durchdringungsgefüge ausgebildet ist, wobei das Einlagerungsgefüge die erste Phase als in drei Raumdimensionen kontinuierlich auftretende Matrixphase und die zweite Phase als diskontinuierliche, statistisch verteilte Einlagerungsphase aufweist, und wobei die erste Phase durch Sintern hergestellt ist.
Abstract:
One embodiment includes a method to regenerate a component (10). The method includes additively manufacturing a component (10) to have voids greater than 0 percent but less than approximately 15 percent in a near finished shape. The component (10) is encased in a shell mold (22). The shell mold (22) is cured. The encased component (10) is placed in a furnace and the component (10) is melted. The component (10) is solidified in the shell mold (22). The shell mold (22) is removed from the solidified component (10).
Abstract:
Electrodes and their associated methods of manufacturing are disclosed. An electrode comprises a metal body, a conductive coating, and a metal oxide layer. The metal body is formed from a plurality of compacted metal nanoparticles. The conductive coating is formed on a first side of the metal body. The conductive coating comprises a conductive material. The metal oxide layer is formed on a second side of the metal body. The metal oxide layer includes a plurality of metal oxide nanoparticles. The electrode may be used in a supercapacitor. A method for fabricating an electrode comprises synthesizing a plurality of metal nanoparticles, compacting the plurality of metal nanoparticles into a metal body, depositing a conductive coating on a first side of the metal body, and forming a metal oxide layer on a second side of the metal body.
Abstract:
A permanent magnet has a grain structure that includes a main phase (S) and a grain boundary phase (R) that is primarily composed of a first metal (neodymium). A second metal (dysprosium) that enhances the coercivity of the permanent magnet and a third metal (yttrium) that has a lower standard free energy of oxide formation than the first metal (neodymium) and the second metal (dysprosium) are diffused in the permanent magnet, and the third metal (yttrium) is present in the form of an oxide in the grain boundary phase.