Abstract:
An edge termination structure includes a final dielectric trench containing permanent charge. The final dielectric trench is surrounded by first conductivity type semiconductor material (doped by lateral outdiffusion from the trenches), which in turn is laterally surrounded by second conductivity type semiconductor material.
Abstract:
A method of forming a diffusion region is disclosed. The method includes depositing a nanoparticle ink on a surface of a wafer to form a non-densified thin film, the nanoparticle ink having set of nanoparticles, wherein at least some nanoparticles of the set of nanoparticles include dopant atoms therein. The method also includes heating the non-densified thin film to a first temperature and for a first time period to remove a solvent from the deposited nanoparticle ink; and heating the non-densified thin film to a second temperature and for a second time period to form a densified thin film, wherein at least some of the dopant atoms diffuse into the wafer to form the diffusion region.
Abstract:
A method of forming a diffusion region is disclosed. The method includes depositing a nanoparticle ink on a surface of a wafer to form a non-densified thin film, the nanoparticle ink having set of nanoparticles, wherein at least some nanoparticles of the set of nanoparticles include dopant atoms therein. The method also includes heating the non-densified thin film to a first temperature and for a first time period to remove a solvent from the deposited nanoparticle ink; and heating the non-densified thin film to a second temperature and for a second time period to form a densified thin film, wherein at least some of the dopant atoms diffuse into the wafer to form the diffusion region.
Abstract:
A method of forming a diffusion region is disclosed. The method includes depositing a nanoparticle ink on a surface of a wafer to form a non-densified thin film, the nanoparticle ink having set of nanoparticles, wherein at least some nanoparticles of the set of nanoparticles include dopant atoms therein. The method also includes heating the non-densified thin film to a first temperature and for a first time period to remove a solvent from the deposited nanoparticle ink; and heating the non-densified thin film to a second temperature and for a second time period to form a densified thin film, wherein at least some of the dopant atoms diffuse into the wafer to form the diffusion region.
Abstract:
This invention describes a method of building complementary logic circuits using junction field effect transistors in silicon. This invention is ideally suited for deep submicron dimensions, preferably below 65 nm. The basis of this invention is a complementary Junction Field Effect Transistor which is operated in the enhancement mode. The speed-power performance of the JFETs becomes comparable with the CMOS devices at sub-70 nanometer dimensions. However, the maximum power supply voltage for the JFETs is still limited to below the built-in potential (a diode drop). To satisfy certain applications which require interface to an external circuit driven to higher voltage levels, this invention includes the structures and methods to build CMOS devices on the same substrate as the JFET devices.
Abstract:
This invention describes a method of building complementary logic circuits using junction field effect transistors in silicon. This invention is ideally suited for deep submicron dimensions, preferably below 65 nm. The basis of this invention is a complementary Junction Field Effect Transistor which is operated in the enhancement mode. The speed-power performance of the JFETs becomes comparable with the CMOS devices at sub-70 nanometer dimensions. However, the maximum power supply voltage for the JFETs is still limited to below the built-in potential (a diode drop). To satisfy certain applications which require interface to an external circuit driven to higher voltage levels, this invention includes the structures and methods to build CMOS devices on the same substrate as the JFET devices.
Abstract:
Erläutert wird unter anderem ein Transistor mit einem elektrisch isolierenden Isoliergraben (48), der sich von einer Hauptfläche (30) in Richtung eines hauptflächenfernen Anschlussbereiches (14) erstreckt. Ausserdem enthält der Transistor einem Hilfsgraben (46), der sich von der Hauptfläche (30) bis zu dem hauptflächenfernen Anschlussbereich (14) erstreckt. Der Transistor benötigt eine kleine Chipfläche und hat hervorragende elektrische Eigenschaften.
Abstract:
Chemical vapor deposition processes utilize chemical precursors that allow for the deposition of thin films to be conducted at or near the mass transport limited regime. The processes have high deposition rates yet produce more uniform films, both compositionally and in thickness, than films prepared using conventional chemical precursors. In preferred embodiments, trisilane is employed to deposit thin films containing silicon useful in the semiconductor industry in various applications such as transistor gate electrodes.
Abstract:
Bei dem erfindungsgemäßen Verfahren zur Herstellung eines Bipolartransistors mit Polysiliziumemitter wird zuerst eine Kollektorregion eines ersten Leitfähigkeitstyps und daran angrenzend eine Basisregion eines zweiten Leitfähigkeitstyps erzeugt. Nun wird zumindest eine Schicht aus einem isolierenden Material aufgebracht, wobei die zumindest eine Schicht strukturiert wird, so daß zumindest ein Abschnitt der Basisregion freigelegt ist. Als nächstes wird eine Schicht aus einem mit Dotierungsatomen hochdotierten polykristallinen Halbleitermaterial des ersten Leitfähigkeitstyps erzeugt, so daß im wesentlichen der freigelegte Abschnitt bedeckt ist. Nun wird eine zweite Schicht aus einem hochleitfähigen Material auf der Schicht aus dem polykristallinen Halbleitermaterial erzeugt, um mit derselben eine Emitterdoppelschicht zu bilden. Daraufhin wird bewirkt, daß zumindest ein Teil der Dotierungsatome des ersten Leitfähigkeitstyps der hochdotierten polykristallinen Halbleiterschicht in die Basisregion gelangt, um eine Emitterregion des ersten Leitfähigkeitstyps zu erzeugen.
Abstract:
Chemical vapor deposition processes utilize chemical precursors that allow for the deposition of thin films to be conducted at or near the mass transport limited regime. The processes have high deposition rates yet produce more uniform films, both compositionally and in thickness, than films prepared using conventional chemical precursors. In preferred embodiments, trisilane is employed to deposit thin films containing silicon are useful in the semiconductor industry in various applications such as transistor gate electrodes.