Abstract:
A self-aligned fabrication process for three-dimensional non-volatile memory is disclosed. A double etch process forms conductors at a given level in self-alignment with memory pillars both underlying and overlying the conductors. Forming the conductors in this manner can include etching a first conductor layer using a first repeating pattern in a given direction to form a first portion of the conductors. Etching with the first pattern also defines two opposing sidewalls of an underlying pillar structure, thereby self-aligning the conductors with the pillars. After etching, a second conductor layer is deposited followed by a semiconductor layer stack. Etching with a second pattern that repeats in the same direction as the first pattern is performed, thereby forming a second portion of the conductors that is self-aligned with overlying layer stack lines. These layer stack lines are then etched orthogonally to define a second set of pillars overlying the conductors.
Abstract:
A semiconductor device including a plurality of copper interconnects. At least a first portion of the plurality of copper interconnects has a meniscus in a top surface. The semiconductor device also includes a plurality of air gaps, wherein each air gap of the plurality of air gaps is located between an adjacent pair of at least the first portion of the plurality of bit lines.
Abstract:
A memory system is disclosed that includes a set of non-volatile storage elements. A given memory cell has a dielectric cap above the floating gate. In one embodiment, the dielectric cap resides between the floating gate and a conformal IPD layer. The dielectric cap reduces the leakage current between the floating gate and a control gate. The dielectric cap achieves this reduction by reducing the strength of the electric field at the top of the floating gate, which is where the electric field would be strongest without the dielectric cap for a floating gate having a narrow stem.
Abstract:
A semiconductor device including a plurality of copper interconnects. At least a first portion of the plurality of copper interconnects has a meniscus in a top surface. The semiconductor device also includes a plurality of air gaps, wherein each air gap of the plurality of air gaps is located between an adjacent pair of at least the first portion of the plurality of bit lines.
Abstract:
A non-volatile storage system in which a sidewall insulating layer of a floating gate is significantly thinner than a thickness of a bottom insulating layer, and in which raised source/drain regions are provided. During programming or erasing, tunneling occurs predominantly via the sidewall insulating layer and the raised source/drain regions instead of via the bottom insulating layer. The floating gate may have a uniform width or an inverted T shape. The raised source/drain regions may be epitaxially grown from the substrate, and may include a doped region above an undoped region so that the channel length is effectively extended from beneath the floating gate and up into the undoped regions, so that short channel effects are reduced. The ratio of the thicknesses of the sidewall insulating layer to the bottom insulating layer may be about 0.3 to 0.67.