Abstract:
Embodiments of the present invention generally relate to methods and apparatuses using supercritical fluids and/or dense fluids to deposit a metal material on the surface of a substrate. In one embodiment, a metal material layer is deposited by applying a supercritical fluid, a dense fluid, or combinations thereof and a metal-containing precursor to the surface of a substrate inside a substrate processing chamber. In another embodiment, a first metal material and a second metal material is sequentially deposited and annealing is performed to form a metal alloy material on the surface of a substrate. In still another embodiment, a copper material layer is deposited by applying a supercritical fluid, a dense fluid, or combinations thereof and a copper containing precursor to the surface of the substrate.
Abstract:
Embodiments of the present invention generally relate to methods and apparatuses using supercritical fluids and/or dense fluids to deposit a metal material on the surface of a substrate. In one embodiment, a metal material layer is deposited by applying a supercritical fluid, a dense fluid, or combinations thereof and a metal-containing precursor to the surface of a substrate inside a substrate processing chamber. In another embodiment, a first metal material and a second metal material is sequentially deposited and annealing is performed to form a metal alloy material on the surface of a substrate. In still another embodiment, a copper material layer is deposited by applying a supercritical fluid, a dense fluid, or combinations thereof and a copper containing precursor to the surface of the substrate.
Abstract:
In one aspect, a method is provided which includes (1) providing a substrate including a photoresist layer and an additional layer which may be a potential source of contaminants, and (2) preventing a release of contaminants from the additional layer, wherein preventing the release of contaminants from the additional layer protects the photoresist layer from exposure to contaminants from the additional layer. Numerous other aspects are provided.
Abstract:
Methods are provided for depositing a dielectric material for use as an anti-reflective coating and sacrificial dielectric material in damascene formation. In one aspect, a process is provided for processing a substrate including depositing an acidic dielectric layer on the substrate by reacting an oxygen-containing organosilicon compound and an acidic compound, depositing a photoresist material on the acidic dielectric layer, and patterning the photoresist layer. The acidic dielectric layer may be used as a sacrificial layer in forming a feature definition by etching a partial feature definition, depositing the acidic dielectric material, etching the remainder of the feature definition, and then removing the acidic dielectric material to form a feature definition.
Abstract:
A through-silicon via fabrication method includes etching a plurality of through holes in a silicon plate. An oxide liner is deposited on the surface of the silicon plate and on the sidewalls and bottom wall of the through holes. A metallic conductor is then deposited in the through holes. In another version, which may be used concurrently with the oxide liner, a silicon nitride passivation layer is deposited on the exposed back surface of the silicon plate of the substrate.
Abstract:
A method of forming a passivation layer comprising silicon nitride on features of a substrate is described. In a first stage of the deposition method, a dielectric deposition gas, comprising a silicon-containing gas and a nitrogen-containing gas, is introduced into the process zone and energized to deposit a silicon nitride layer. In a second stage, a treatment gas, having a different composition than that of the dielectric deposition gas, is introduced into the process zone and energized to treat the silicon nitride layer. The first and second stages can be performed a plurality of times.
Abstract:
A method of forming a passivation layer comprising silicon nitride on features of a substrate is described. In a first stage of the deposition method, a dielectric deposition gas, comprising a silicon-containing gas and a nitrogen-containing gas, is introduced into the process zone and energized to deposit a silicon nitride layer. In a second stage, a treatment gas, having a different composition than that of the dielectric deposition gas, is introduced into the process zone and energized to treat the silicon nitride layer. The first and second stages can be performed a plurality of times.
Abstract:
A through-silicon via fabrication method includes etching a plurality of through holes in a silicon plate. An oxide liner is deposited on the surface of the silicon plate and on the sidewalls and bottom wall of the through holes. A metallic conductor is then deposited in the through holes. In another version, which may be used concurrently with the oxide liner, a silicon nitride passivation layer is deposited on the exposed back surface of the silicon plate of the substrate.
Abstract:
A method and apparatus for forming narrow vias in a substrate is provided. A pattern recess is etched into a substrate by conventional lithography. A thin conformal layer is formed over the surface of the substrate, including the sidewalls and bottom of the pattern recess. The thickness of the conformal layer reduces the effective width of the pattern recess. The conformal layer is removed from the bottom of the pattern recess by anisotropic etching to expose the substrate beneath. The substrate is then etched using the conformal layer covering the sidewalls of the pattern recess as a mask. The conformal layer is then removed using a wet etchant.
Abstract:
A method and apparatus for forming narrow vias in a substrate is provided. A pattern recess is etched into a substrate by conventional lithography. A thin conformal layer is formed over the surface of the substrate, including the sidewalls and bottom of the pattern recess. The thickness of the conformal layer reduces the effective width of the pattern recess. The conformal layer is removed from the bottom of the pattern recess by anisotropic etching to expose the substrate beneath. The substrate is then etched using the conformal layer covering the sidewalls of the pattern recess as a mask. The conformal layer is then removed using a wet etchant.