MAGNETIC CAPTURE OF A TARGET FROM A FLUID
    1.
    发明申请
    MAGNETIC CAPTURE OF A TARGET FROM A FLUID 审中-公开
    从流体中捕获一个目标的磁性

    公开(公告)号:WO2016077067A3

    公开(公告)日:2016-07-28

    申请号:PCT/US2015057516

    申请日:2015-10-27

    Abstract: Disclosed herein is an improved method for magnetic capture of target molecules (e.g., microbes) in a fluid. Kits and solid substrates for carrying the method described herein are also provided. In some embodiments, the methods, kits, and solid substrates described herein are optimized for separation and/or detection of microbes and microbe-associated molecular pattern (MAMP) (including, e.g., but not limited to, a cell component of microbes, lipopolysaccharides (LPS), and/or endotoxin).

    Abstract translation: 本文公开了用于磁性捕获流体中的靶分子(例如微生物)的改进方法。 还提供了用于运载本文所述方法的试剂盒和固体基质。 在一些实施方案中,本文所述的方法,试剂盒和固体基质针对微生物和微生物相关分子模式(MAMP)(包括例如但不限于微生物的细胞组分,脂多糖的分离和/ (LPS)和/或内毒素)。

    SELF-ASSEMBLING PEPTIDES, PEPTIDE NANOSTRUCTURES AND USES THEREOF
    2.
    发明申请
    SELF-ASSEMBLING PEPTIDES, PEPTIDE NANOSTRUCTURES AND USES THEREOF 审中-公开
    自组装肽,肽类纳米结构及其用途

    公开(公告)号:WO2014014613A3

    公开(公告)日:2014-05-01

    申请号:PCT/US2013046821

    申请日:2013-06-20

    Abstract: Provided herein relates to self-assembling peptides and various nanostructures self-assembled from the isolated peptides. In some embodiments, the self-assembling peptides can form a nanostructure, e.g., a nanoparticle or microparticle, for use in various biomedical applications such as drug delivery or tissue engineering. In some embodiments, the nanostructures can comprise an agent, e.g., a biological molecule. The agent can be encapsulated or entrapped in the nanostructures during formation of the nanostructures. Alternatively or additionally, the agent can be integrated directly or indirectly (e.g., via a linker or a conjugation or crosslinking agent) to the self-assembling peptide structure, prior to formation of the nanostructures. In some embodiments where the agent is a peptide-based agent, unitary peptide nanostructures, rather than nanoparticles that are formed and later covalently modified, can be generated.

    Abstract translation: 本文涉及自组装肽和从分离的肽自组装的各种纳米结构。 在一些实施方案中,自组装肽可以形成用于各种生物医学应用如药物递送或组织工程的纳米结构,例如纳米颗粒或微粒。 在一些实施方案中,纳米结构可以包含试剂,例如生物分子。 在形成纳米结构期间,该试剂可被包封或包埋在纳米结构中。 或者或另外,在形成纳米结构之前,可将试剂直接或间接(例如经由接头或共轭或交联剂)整合至自组装肽结构。 在其中试剂是基于肽的试剂的一些实施方案中,可以产生单一肽纳米结构,而不是形成和随后共价修饰的纳米颗粒。

    THERMAL MANAGEMENT OF TRANSPARENT MEDIA
    3.
    发明申请
    THERMAL MANAGEMENT OF TRANSPARENT MEDIA 审中-公开
    透明媒体的热管理

    公开(公告)号:WO2012118956A3

    公开(公告)日:2012-11-08

    申请号:PCT/US2012027253

    申请日:2012-03-01

    Abstract: A bio-inspired window can be created by applying one or more heat exchange layers to one or more surfaces of a window of a building, boat, vehicle or any other structure. The heat exchange layer can include an interconnected network or array of channels or microchannels that can be used to flow a fluid over the surface of the window. The fluid can be used to heat or cool the surface of the window panel to control the flow of heat across the window and reduce the heating or cooling energy load of building. The fluid can be heated or cooled using the ambient air in the building. The refractive index of the fluid can be adjusted to change of optical transparency properties of the window. In some embodiments, the window can appear nearly as clear as an ordinary panel of glass. In other embodiments, the window can color, block or scatter the incoming light.

    Abstract translation: 可以通过将一个或多个热交换层施加到建筑物,船,车辆或任何其他结构的窗户的一个或多个表面来创建生物启发的窗户。 热交换层可以包括可用于使流体在窗口表面上流动的通道或微通道的互连网络或阵列。 流体可用于加热或冷却窗户面板的表面,以控制跨过窗户的热量流动,并减少建筑物的加热或冷却能量负荷。 流体可以使用建筑物中的环境空气进行加热或冷却。 可以调节流体的折射率以改变窗口的光学透明性。 在一些实施例中,窗口可以看起来像普通的玻璃板几乎一样清楚。 在其他实施例中,窗口可以着色,阻挡或散射入射光。

    A MICROFLUIDIC DEVICE FOR REAL-TIME CLINICAL MONITORING AND QUANTITATIVE ASSESSMENT OF WHOLE BLOOD COAGULATION
    5.
    发明申请
    A MICROFLUIDIC DEVICE FOR REAL-TIME CLINICAL MONITORING AND QUANTITATIVE ASSESSMENT OF WHOLE BLOOD COAGULATION 审中-公开
    用于实时临床监测和全血凝固定量评估的微流体装置

    公开(公告)号:WO2015102726A3

    公开(公告)日:2015-10-29

    申请号:PCT/US2014060956

    申请日:2014-10-16

    Abstract: In accord with one aspect, a microfluidic coagulation assessment device defining a plurality of microchannels is provided, wherein a blood sample is driven through the microchannels at a substantially constant flow rate and a controller is configured to, in combination with a timer and a pressure sensing device, determine a first pressure value (or flow value) at an initiation of flow, a first time (Tpg) at which a second pressure value is about twice the determined first pressure value, and a second time (Tpf) at which a third pressure value is about (1+e) times the determined first pressure value and establish a subject coagulation model predictive of channel occlusion therefrom. In another aspect, the blood sample is driven through the microchannels at a substantially constant pressure and a controller is configured to, in combination with a timer and a flow sensing device make the determination based on flow rate.

    Abstract translation: 根据一个方面,提供了限定多个微通道的微流体凝固评估装置,其中血液样本以基本恒定的流速被驱动通过微通道,并且控制器被配置为结合定时器和压力感测 装置,在流动开始时确定第一压力值(或流量值),其中第二压力值大约是所确定的第一压力值的两倍的第一时间(Tpg),以及第二时间(Tpf) 压力值约为所确定的第一压力值的(1 + e)倍,并建立预测通道阻塞的对象凝固模型。 在另一方面,血液样本以基本上恒定的压力驱动通过微通道,并且控制器被配置为结合定时器和流量检测装置基于流量进行确定。

    DEVICE AND METHOD FOR COMBINED MICROFLUIDIC-MICROMAGNETIC SEPARATION OF MATERIAL IN CONTINUOUS FLOW
    10.
    发明申请
    DEVICE AND METHOD FOR COMBINED MICROFLUIDIC-MICROMAGNETIC SEPARATION OF MATERIAL IN CONTINUOUS FLOW 审中-公开
    用于连续流动的材料组合微流化 - 微磁性分离的装置和方法

    公开(公告)号:WO2007044642A3

    公开(公告)日:2007-11-15

    申请号:PCT/US2006039344

    申请日:2006-10-06

    Abstract: A miniaturized, integrated, microfluidic device pulls materials bound to magnetic particles from one laminar flow path to another by applying a local magnetic field gradient. The device removes microbial and mammalian cells from flowing biological fluids without any wash steps. A microfabricated high-gradient magnetic field concentrator (HGMC) is integrated at one side of a microfluidic channel. When magnetic particles are introduced into one flow path, they remain limited to that flow path. When the HGMC is magnetized, the magnetic beads are pulled from the initial flow path into the collection stream, thereby cleansing the fluid. The microdevice allows large numbers of beads and materials to be sorted simultaneously, has no capacity limit, does not lose separation efficiency as particles are removed, and is useful for cell separations from blood and other biological fluids. This on-chip separator allows cell separations to be performed in the field outside of hospitals and laboratories.

    Abstract translation: 小型化,集成化的微流体装置通过施加局部磁场梯度将结合到磁性粒子的材料从一个层流路径拉到另一层流路径。 该装置不需要任何清洗步骤即可从流动的生物流体中去除微生物和哺乳动物细胞 微制造的高梯度磁场集中器(HGMC)集成在微流体通道的一侧。 当磁性颗粒被引入到一个流动路径中时,它们仍然限于该流动路径。 当HGMC被磁化时,磁珠从初始流动路径被拉入收集流中,从而清洁流体。 微装置允许大量的珠子和材料同时分选,没有容量限制,不会因为颗粒被去除而失去分离效率,并且可用于从血液和其他生物流体中分离细胞。 这种片上分离器可以在医院和实验室以外的地方进行细胞分离。

Patent Agency Ranking