Abstract:
Disclosed herein is an improved method for magnetic capture of target molecules (e.g., microbes) in a fluid. Kits and solid substrates for carrying the method described herein are also provided. In some embodiments, the methods, kits, and solid substrates described herein are optimized for separation and/or detection of microbes and microbe-associated molecular pattern (MAMP) (including, e.g., but not limited to, a cell component of microbes, lipopolysaccharides (LPS), and/or endotoxin).
Abstract:
Provided herein relates to self-assembling peptides and various nanostructures self-assembled from the isolated peptides. In some embodiments, the self-assembling peptides can form a nanostructure, e.g., a nanoparticle or microparticle, for use in various biomedical applications such as drug delivery or tissue engineering. In some embodiments, the nanostructures can comprise an agent, e.g., a biological molecule. The agent can be encapsulated or entrapped in the nanostructures during formation of the nanostructures. Alternatively or additionally, the agent can be integrated directly or indirectly (e.g., via a linker or a conjugation or crosslinking agent) to the self-assembling peptide structure, prior to formation of the nanostructures. In some embodiments where the agent is a peptide-based agent, unitary peptide nanostructures, rather than nanoparticles that are formed and later covalently modified, can be generated.
Abstract:
A bio-inspired window can be created by applying one or more heat exchange layers to one or more surfaces of a window of a building, boat, vehicle or any other structure. The heat exchange layer can include an interconnected network or array of channels or microchannels that can be used to flow a fluid over the surface of the window. The fluid can be used to heat or cool the surface of the window panel to control the flow of heat across the window and reduce the heating or cooling energy load of building. The fluid can be heated or cooled using the ambient air in the building. The refractive index of the fluid can be adjusted to change of optical transparency properties of the window. In some embodiments, the window can appear nearly as clear as an ordinary panel of glass. In other embodiments, the window can color, block or scatter the incoming light.
Abstract:
The present invention describes improved microfluidic systems and procedures for fabricating improved microfluidic systems, which contain one or more levels of microfluidic channels. The methods for fabrication the systems disclosed can provide a convenient route to topologically complex and improved microfluidic systems. The microfluidic systems can include three-dimensionally arrayed networks of fluid flow paths therein including channels that cross over or under other channels of the network without physical intersection at the points of cross over. The microfluidic networks can be fabricated via replica molding processes utilizing mold masters including surfaces having topological features formed by photolithography. The present invention also involves microfluidic systems and methods for fabricating complex patterns of materials, such as biological materials and cells, on surfaces utilizing the microfluidic systems. Specifically, the invention provides microfluidic surface patterning systems and methods for fabricating complex, discontinuous patterns on surfaces that can incorporate or deposit multiple materials onto the surfaces. The present invention also provides improved microfluidic stamps or applicators for microcontact surface patterning, which are able to pattern onto a surface arbitrary two-dimensional patterns, and which are able to pattern multiple substances onto a surface without the need for multiple steps of registration or stamping during patterning and without the need to selectively "ink" different regions of the stamp with different materials.
Abstract:
In accord with one aspect, a microfluidic coagulation assessment device defining a plurality of microchannels is provided, wherein a blood sample is driven through the microchannels at a substantially constant flow rate and a controller is configured to, in combination with a timer and a pressure sensing device, determine a first pressure value (or flow value) at an initiation of flow, a first time (Tpg) at which a second pressure value is about twice the determined first pressure value, and a second time (Tpf) at which a third pressure value is about (1+e) times the determined first pressure value and establish a subject coagulation model predictive of channel occlusion therefrom. In another aspect, the blood sample is driven through the microchannels at a substantially constant pressure and a controller is configured to, in combination with a timer and a flow sensing device make the determination based on flow rate.
Abstract:
The invention provides compositions and methods for treating or imaging stenosis, stenotic lesions, occluded lumens, embolic phenomena or thrombotic disorders. The invention further provides compositions and methods for treating internal hemorrhage.
Abstract:
A method is directed to determining a thrombosis function and includes flowing a fluid sample over a surface having a fixed endothelial cell monolayer. The method further includes stimulating the fixed endothelial cell monolayer to induce formation of a clot, the clot being formed via interaction between the fixed endothelial cell monolayer and the fluid sample. In response to the clot formation, the method further includes determining a thrombosis function associated with the fluid sample and the fixed endothelial cell monolayer.
Abstract:
The invention provides platelet decoys and mimics that can bind to platelet receptor substrate but do not undergo platelet activation. The invention also provides methods of using the platelet decoys for treating, preventing or inhibiting a disease or disorder in subject when platelet activation, aggregation and/or adhesion contributes to the pathology or symptomology of the disease.
Abstract:
An interconnect adaptor for connecting a microfluidic device to a fluidic system. The interconnect adapter includes a base substrate and a nozzle array. The base substrate includes a first side and a second side. The nozzle array includes two or more nozzles extending away from the base substrate. Each nozzle includes an opening with a channel extending therefrom. The channels are configured to transport fluid between the microfluidic device and the fluidic system. Each of the nozzles is configured to be inserted into a respective hole in the microfluidic device. In some embodiments, the insertion forms a radially sealed connection between each nozzle and respective hole when the nozzles are inserted a predetermined distance into the respective holes.
Abstract:
A miniaturized, integrated, microfluidic device pulls materials bound to magnetic particles from one laminar flow path to another by applying a local magnetic field gradient. The device removes microbial and mammalian cells from flowing biological fluids without any wash steps. A microfabricated high-gradient magnetic field concentrator (HGMC) is integrated at one side of a microfluidic channel. When magnetic particles are introduced into one flow path, they remain limited to that flow path. When the HGMC is magnetized, the magnetic beads are pulled from the initial flow path into the collection stream, thereby cleansing the fluid. The microdevice allows large numbers of beads and materials to be sorted simultaneously, has no capacity limit, does not lose separation efficiency as particles are removed, and is useful for cell separations from blood and other biological fluids. This on-chip separator allows cell separations to be performed in the field outside of hospitals and laboratories.