Abstract:
A circuit and method for adaptive trimming of the reference signal for sensing data during a read operation of magnetic memory cells to improve read margin for the magnetic memory cells. The circuit has a trim one-time programmable memory array programmed with offset trim data applied to magnetic memory array sense amplifiers. Sense amplifier trimming circuits receive and decode the trim data to determine offset trim signal magnitude to adjust the reference signal to improve the read margin. The method sets the offset trim level to each increment of the offset trim level. Data is written and read to the magnetic memory array, the number of errors in the array is accumulated for each setting of the offset trim level. The error levels are compared and the appropriate trim level is programmed to the trim memory cells such that a read margin of the sense amplifier is improved.
Abstract:
A circuit and method for adaptive trimming of the reference signal for sensing data during a read operation of magnetic memory cells to improve read margin for the magnetic memory cells. The circuit has a trim one-time programmable memory array programmed with offset trim data applied to magnetic memory array sense amplifiers. Sense amplifier trimming circuits receive and decode the trim data to determine offset trim signal magnitude to adjust the reference signal to improve the read margin. The method sets the offset trim level to each increment of the offset trim level. Data is written and read to the magnetic memory array, the number of errors in the array is accumulated for each setting of the offset trim level. The error levels are compared and the appropriate trim level is programmed to the trim memory cells such that a read margin of the sense amplifier is improved.
Abstract:
An integrated circuit includes a magnetic OTP memory array formed of multiple magnetic OTP memory cells having an MTJ stack with a fixed magnetic layer, a tunnel barrier insulating layer, a free magnetic layer, and a second electrode. When a voltage is applied across the magnetic OTP memory cell, the resistance of the MTJ stack and the gating transistor form a voltage divider to apply a large voltage across the MTJ stack to breakdown the tunnel barrier to short the fixed layer to the free layer. The integrated circuit has multiple MRAM arrays configured such that each of the multiple MRAM arrays have performance and density criteria that match MOS transistor based memory including SRAM, DRAM, and flash memory. The integrated circuit may include a functional logic unit connected with the magnetic OTP memory arrays and the MRAM arrays for providing digital data storage.
Abstract:
A magnetic tunnel junction (MTJ) is disclosed wherein a free layer has an interface with a tunnel barrier and a second interface with a metal oxide layer to promote perpendicular magnetic anisotropy (PMA) therein. A diffusion barrier is formed on a side of the metal oxide layer opposite the second interface to prevent non-magnetic metals in a hard mask or electrode from migrating to the second interface and degrading free layer PMA. A second diffusion barrier may be formed between a second electrode and a reference layer. The diffusion barrier may be a single layer of SiN, TiN, TaN, Mo, or CoFeX where X is Zr, P, B, or Ta, or is a multilayer such as CoFeX/Mo wherein CoFeX contacts the metal oxide layer and Mo adjoins a hard mask. As a result, coercivity is maintained or increased in the MTJ after annealing at 400°C for 30 minutes.
Abstract:
A magnetic tunnel junction (MTJ) is disclosed wherein a free layer (FL) interfaces with a metal oxide (Mox) layer and a tunnel barrier layer to produce interfacial perpendicular magnetic anisotropy (PMA). The Mox layer has a non-stoichiometric oxidation state to minimize parasitic resistance, and comprises a dopant to fill vacant lattice sites thereby blocking oxygen diffusion through the Mox layer to preserve interfacial PMA and high thermal stability at process temperatures up to 400°C. Various methods of forming the doped Mox layer include deposition of the M layer in a reactive environment of O 2 and dopant species in gas form, exposing a metal oxide layer to dopant species in gas form, and ion implanting the dopant. In another embodiment, where the dopant is N, a metal nitride layer is formed on a metal oxide layer, and then an anneal step drives nitrogen into vacant sites in the metal oxide lattice.
Abstract:
An initialization process is disclosed for a perpendicular magnetic tunnel junction (p-MTJ) wherein the switching error rate is reduced from a typical range of 30-100 ppm to less than 10 ppm. In one embodiment, an in-plane magnetic field is applied after a final anneal step is performed during memory device fabrication such that all magnetizations in the free layer, and AP1 and AP2 pinned layers are temporarily aligned "in-plane". After the applied field is removed, interfacial perpendicular magnetic anisotropy (PMA) at a tunnel barrier/API interface induces a single AP1 magnetic domain with a magnetization in a first vertical direction. Interfacial PMA at a FL/tunnel barrier interface affords a single FL domain with magnetization in the first direction or opposite thereto. AP2 magnetization is opposite to the first direction as a result of antiferromagnetic coupling with the AP1 layer. Alternatively, a perpendicular- to-plane magnetic field may be applied for initialization.
Abstract:
A magnetic tunnel junction is disclosed wherein the reference layer and free layer each comprise one layer having a boron content from 25 to 50 atomic%, and an adjoining second layer with a boron content from 1 to 20 atomic%. One of the first and second layers in each of the free layer and reference layer contacts the tunnel barrier. Each boron containing layer has a thickness of 0.1 to 1 nm and may include one or more B layers and one or more Co, Fe, CoFe, or CoFeB layers. As a result, migration of non-magnetic metals along crystalline boundaries to the tunnel barrier is prevented, and the MTJ has a low defect count of around 10 ppm while maintaining an acceptable TMR ratio following annealing to temperatures of about 400°C. The boron containing layers are selected from CoB, FeB, CoFeB and alloys thereof including CoFeNiB.
Abstract:
A seed layer stack (23t) with a uniform top surface having a peak to peak roughness of 0.5 nm is formed by sputter depositing an amorphous layer (22) on a smoothing layer (21) such as Mg where the latter has a resputtering rate 2 to 30X that of the amorphous layer. The uppermost seed (template) layer (23) is NiW, NiMo, or one or more of NiCr, NiFeCr, and Hf while the bottommost seed layer (20) is one or more of Ta, TaN, Zr, ZrN, Nb, NbN, Mo, MoN, TiN, W, WN, and Ru. Accordingly, perpendicular magnetic anisotropy in an overlying magnetic layer is substantially maintained during high temperature processing up to 400°C and is advantageous for magnetic tunnel junctions in embedded MRAMs, spintronic devices, or in read head sensors. The amorphous seed layer is SiN, TaN, or CoFeM where M is B or another element with a content that makes CoFeM amorphous as deposited.
Abstract:
A magnetic tunnel junction with perpendicular magnetic anisotropy (PMA MTJ) is disclosed wherein a free layer (14) has an interface (20) with a tunnel barrier (13) and a second interface (21) with an oxide layer (15). A lattice-matching layer (16-1) adjoins an opposite side of the oxide layer with respect to the free layer and is comprised of Co x FeyNi z L w M v or Co x FeyNi z L w wherein L is one of B, Zr, Nb, Hf, Mo, Cu, Cr, Mg, Ta, Ti, Au, Ag, or P, and M is one of Mo, Mg, Ta, Cr, W, or V, (x + y + z + w + v) = 100 atomic%, x + y > 0, and each of v and w are > 0. The lattice-matching layer grows a BCC structure during annealing at about 400°C thereby promoting BCC structure growth in the oxide layer. As a result, free layer PMA is enhanced and maintained to yield improved thermal stability.
Abstract:
A seed layer stack (24) with a smooth top surface having a peak to peak roughness of 0.5 nm is formed by sputter depositing an amorphous layer (22) on a seed layer (21) such as Mg where the seed layer has a resputtering rate 2 to 30X that of the amorphous layer. The uppermost seed layer (23) is a template layer that is NiCr or NiFeCr. As a result, perpendicular magnetic anisotropy in an overlying magnetic layer that is a reference layer, free layer, or dipole layer is substantially maintained during high temperature processing up to 400°C and is advantageous for magnetic tunnel junctions in embedded MRAMs, spintronic devices, or in read head sensors. The amorphous seed layer is SiN, TaN, or CoFeM where M is B or another element with a content that makes CoFeM amorphous as deposited. The seed layer stack may include a bottommost Ta or TaN buffer layer.