Abstract:
A flip-chip electrical coupling between first and second electrical components (250, 260). The coupling includes a bump (210) and a pad (220). The bump (210) is electrically coupled to the first electrical component (250). The pad (220) is electrically coupled to the second electrical component (260). The pad (220) is electrically coupled to and dimensioned smaller than a corresponding coupling surface (214) of the bump (210). The pad (220) and bump (210) may be electrically coupled together using an ultrasonic stub bump bonding process, conductive epoxy, etc.
Abstract:
A backing block for an ultrasonic transducer array stack of an ultrasound probe is formed as a composite structure of graphite foam impregnated with an epoxy resin. The epoxy resin penetrates the porous foam structure at least part-way into the depth of the graphite foam block and, when cured, provides the backing block with good structural stability. The composite graphite foam backing block is bonded to the integrated circuit of a transducer to provide high thermal conductivity away from the transducer and good acoustic attenuation or scattering of rearward acoustic reverberations.
Abstract:
A flip-chip electrical coupling (100, 200, 300) is formed between first and second electrical components (110, 180; 410, 480). The coupling (100, 200, 300) includes a bump (240, 340) and a contact pad (315). The first electrical component (110, 210, 310, 410) includes the contact pad (315) electrically coupled to the first electrical component (110, 210, 310, 410) and a passivation layer (130, 230, 330) overlying the first electrical component (110, 210, 310, 410) and the contact pad (315). The passivation layer (130, 230, 330) is arranged having an opening (120, 220, 320) positioned over the contact pad (315). A bump (240, 340) is positioned overlying the opening (120, 220, 320) and substantially overlying the passivation layer (130, 230, 330). The bump (240, 340) is formed to be in electrical contact with the contact pad (315). The bump (240, 340) is arranged to couple the first and second electrical components (110, 180; 410, 480) during the flip-chip coupling process.
Abstract:
An acoustic imaging apparatus (100, 200, 300, 400) includes an acoustic probe (110) adapted to receive an acoustic signal, an acoustic signal processor (120) adapted to receive and process the acoustic signal from the acoustic probe, a display (130) for displaying images in response to the processed acoustic signal, and a non-manual control device (160, 160a, 160b, 160c). The acoustic imaging apparatus (100, 200, 300, 400) is adapted to control at least one of the acoustic probe (110), the acoustic signal processor (120) and the display 9130) in response to at least one signal from the non-manual control device (160, 160a, 160b, 160c). The non-manual control device (160, 160a, 160b, 160c) is either operated by a human foot, or mounted on a human head and operated by movement of the human head.
Abstract:
An ultrasound transducer 10 comprises an application specific integrated circuit (ASIC) 14, an array of acoustic elements 20, and a pitch independent interposer 12. The ASIC 14 includes a plurality of contact pads 16 on a surface of the ASIC that are separated from adjacent ones thereof by a first pitch. The acoustic elements 22 of the array 20 are separated from adjacent ones thereof by a second pitch. In addition, the pitch independent interposer 12 features a plurality of conductive elements 26 separated from adjacent ones thereof by a third pitch different from both the first pitch and the second pitch. The pitch independent interposer 26 is electrically coupled (i) on a first side to the ASIC via a first subset of the plurality of conductive elements and (ii) on a second side to the array of acoustic elements via a second subset of the plurality of conductive elements, wherein one or more of the plurality of conductive elements 26 electrically couples a contact pad 16 of the ASIC 14 with a corresponding acoustic element 22 of the array 20 of acoustic elements.
Abstract:
An ultrasound transducer includes one or more microbeamformer integrated circuit chips, an array of acoustic elements, and a redistribution interconnect coupled via conductive elements between the one or more integrated circuit chips and the array of acoustic elements. The one or more microbeamformer integrated circuit chips each include a plurality of bond pads separated from adjacent ones thereof by a first pitch set. The acoustic elements of the array are separated from adjacent ones thereof by a second pitch set, the second pitch set being different from the first pitch set. In addition, the redistribution interconnect couples on a first side of the redistribution interconnect to the one or more microbeamformer integrated circuit chips via conductive elements. The redistribution interconnect couples on a second side to the array of transducer elements via conductive elements. The redistribution interconnect provides an interconnection between the bond pads of the one or more microbeamformer integrated circuit chips with the first pitch set with corresponding ones of the acoustic elements of the array with the second pitch set.
Abstract:
A backing block for an ultrasonic transducer array stack of an ultrasound probe is formed as a composite structure of material of high thermal conductivity in which is embedded a structure of acoustic dampening material. In a constructed embodiment the composite structure is formed from a block of thermally conductive graphite in which a plurality of cylindrical holes are formed which are filled with acoustic dampening material. The holes are angled in relation to the Z-axis direction from the rear of the transducer stack so that reverberation energy traveling in that direction will encounter acoustic dampening material. The graphite around the holes is effective to conduct heat to the rear of the probe and away from the transducer stack and its ASIC.
Abstract:
The present invention relates to an apparatus and a method for obtaining a 3D image in radial applications, typically endorectal imaging where the object of interrogation is the rectal wall, in particular, the present invention is related a two dimensional (2D) acoustic array transducer that is wrapped around a cylindrically shaped probe so that the 2D array is capable of steering the beam radially and axially to obtain a precise 3D data acquisition of the object of interrogation.