Abstract:
Devices, modules, systems, and methods for the desalination of water provided. The devices, modules, systems can include a desalination member separating a concentrated fluid chamber from a dilute fluid chamber. The desalination member can comprise one or more pores extending through the desalination member to fluidly connect concentrated fluid chamber and the dilute fluid chamber, and one or more electrodes configured to generate an electric field gradient in proximity to the opening of the one or more pores in the desalination member. Under an applied bias and in the presence of a pressure driven flow of saltwater into the concentrated fluid chamber, the electric field gradient can preferentially direct ions in saltwater away from the opening of the one or more pores in the desalination member, while desalted water can flow through the pores into dilute fluid chamber.
Abstract:
Devices and methods integrate nanopore and microfluidic technologies for recording molecular characteristics of individual molecules such as, for example, biomolecules. Devices comprise a first substrate comprising a microchannel, a second substrate comprising a microchannel, the second substrate positioned below the first substrate, and a membrane having a thickness of about 0.3 nm to about 1 nm and comprising at least one nanopore, the membrane positioned between the first substrate and the second substrate, wherein a single nanopore of the membrane is constructed and arranged for electrical and fluid communication between the microchannel of the first substrate and the microchannel of the second substrate. To mitigate the effect of errors that occur during de novo DNA synthesis, longer DNA molecules are typically synthesized from shorter oligonucleotides by polymerase construction and amplification (PCA), or by other methods.
Abstract:
A device for extracting and concentrating a target analyte including a sample channel that receives the sample, a separation channel, a waste channel, a first junction between the sample channel and the separation channel, and, a second junction between the separation channel and the waste channel. The first junction selectively transports a first group of analytes, including target analytes, from the sample channel to the separation channel in accordance with a size of a first free transport region of the first junction. The second junction selectively transports a second group of analytes from the separation channel to the waste channel in accordance with a size of a second free transport region of the second junction, the second group being a subset of the first group, so as to concentrate a number of the target analytes in the separation channel.
Abstract:
The invention is directed to devices and methods that integrate nanopore and microfluidic technologies for recording molecular characteristics of individual molecules such as, for example, biomolecules.
Abstract:
A microporous structure includes an array of nano wires and a coating about the nano wires of the array. The coating defines pores between the nano wires. And a sample preparation device comprises a donor phase microfluidic channel, an acceptor phase microfluidic channel and a supported liquid membrane between the donor phase microfluidic channel and the acceptor phase microfluidic channel, wherein the supported liquid membrane has a microporous structure comprising an array of nano wires, a coating defining pores between the nano wires and an organic phase supported within the pores.
Abstract:
A micro fluid filtration system (100) preferably for increasing the concentration of components contained in a fluid sample has a fluid circuitry (1). The fluid circuitry (1) comprises the following elements: A tangential flow filtration element (7) capable for separating the fluid sample into a retentate stream and a permeate stream upon passage of the fluid, an element for pumping (3) for creating and driving a fluid flow through the fluid circuitry (1) and at least one element for obtaining information about the properties of the fluid sample within the circuitry. The circuitry further comprises a plurality of conduits (24) connecting the elements of the fluid circuitry (1) through which a fluid stream of the fluid sample is conducted. The circuitry (1) has a minimal working volume of at most 5 ml, which is the minimal fluid volume retained in the elements and the conduits (24) of the circuitry (1) such that the fluid can be recirculated in the circuitry (1) without pumping air through the circuitry (1). An integrated microfluidic element (20) of the circuitry (1) contains the functionality of at least two elements of the group of elements of the circuitry (1).
Abstract:
The present invention discloses a method to continuously manufacture micro- and/or nanoparticles of single component particles or multi-component particles such as particulate amorphous solid dispersions or particulate co-crystals. The continuous method comprises the steps of 1. preparing a first solution comprising at least one component and at least one solvent and a second solution comprising at least one anti-solvent of the at least one component comprised in the first solution, 2. mixing said first solution and said second solution by means of microfluidization to produce a suspension by precipitation or co-precipitation, 3. feeding said suspension to a filtration system to obtain a concentrate stream, 4. feeding said concentrate stream to a spray dryer, 5. atomizing said concentrate stream using at least one atomization nozzle, 6. drying said atomized concentrate stream to obtain particles, and 7. collecting said particles. Single component particles or multi-component particles, particulate amorphous solid dispersions, particulate co-crystals and pharmaceutical compositions are also disclosed.
Abstract:
An compact hydraulic manifold for transporting shear sensitive fluids is provided. A channel network can include a trunk and branch architecture coupled to a bifurcation architecture. Features such as tapered channel walls, curvatures and angles of channels, and zones of low fluid pressure can be used to reduce the size while maintaining wall shear rates within a narrow range. A hydraulic manifold can be coupled to a series of microfluidic layers to construct a compact microfluidic device.
Abstract:
There is provided a filtering membrane and method of forming thereof. The filtering membrane comprises a substrate having a plurality of holes that extend through the substrate, and arresting formations provided around the openings of the holes on at least one side of the substrate, the arresting formations being configured to arrest the ingress of particulate entities of a selected particle oversize from entering the holes. There is also provided a mold and method of forming thereof as well as a microfluidic device incorporating the filtering membrane.
Abstract:
A method of making a micro-dialysis probe (6) by providing a first flow channel (4), a second flow channel (5) and a separating wall (3) arranged in such a manner that it separates the first flow channel (4) and the second flow channel (5). The method further comprises providing at least one opening (7) in an outer wall (2) of the first (4) or second (5) flow channel, and arranging a semi-permeable membrane tube (8) therein. Finally, the method comprises removing material from the separating wall (3), thereby providing a communication opening (9) providing fluid communication between the first flow channel (4) and the second flow channel (5). The method is very easy to perform, and it is suitable for mass production. The invention further relates to a micro-dialysis probe (6).