Abstract:
A method for recognising, collecting and repositioning objects (1 ) having non-predetermined dimensional characteristics and which are arranged on a support surface (2) is implemented by means of a gripper group (30). The gripper group (30) is mobile in at least a lengthwise direction of movement relative to an object (1) to be handled, a direction of moving towards/away from the object (1 ), and a direction of adjustment of the height relative to the object (1). The gripper group (30) is controlled by a computerised control unit. The method comprises the following operating stages: a stage of approaching and recognising an object (1 ), comprising the approximately-set approach of the gripper group (30) to the object (1 ), performed with the assistance of positional information stored in the control unit; identification of the outline of the object (1), by perpendicular three- dimensional scanning performed, using sequences of movements of the gripper group (30), by means for gauging punctual distance (50) arranged near at least one finger (35, 36) of the gripper group (30), and by sensor means (55) for detecting the presence of the object (1), which identify the depth of the object and are arranged at the head of the fingers (35, 36); a stage of gripping the object (1); a stage of collection the object (1), comprising operations of lifting and moving the object (1 ).
Abstract:
A drop perception system is disclosed that includes an open housing structure having an internal volume, an open top and an open bottom, and a plurality of perception units positioned to capture perception data within the internal volume at a plurality of locations between the open top and the open bottom of the open housing.
Abstract:
The invention relates to a control system for a drive motor (8) for approaching a pre-determined nominal position, especially for a shelf operating device, and a corresponding control method. Said control system comprises a displacement sensor, a position control device that converts a nominal position by default into a nominal acceleration on the basis of the actual position, an acceleration regulator that converts the pre-determined nominal acceleration into a corresponding rotational speed acceleration of the drive motor (8), and at least one acceleration sensor (14) for detecting the actual acceleration. The difference between the actual acceleration and the nominal acceleration is calculated and applied to the nominal acceleration by default, and the actual position is applied to the nominal position by default, respectively forming a control loop. In order to prevent a stacking truck or a pole from any undesired vibration, a rotational speed control loop enables the rotational speed of the drive motor (8) to be directly redirected from the drive motor (8), and the acceleration sensor (14) is arranged on the object to be positioned, the connection of said object to the drive motor (8) being elastic.
Abstract:
An order-picking method includes autonomously routing a plurality of mobile robotic units in an order fulfillment facility and picking articles to or putting articles from the robotic units in the order fulfillment facility. A material-handling robotic unit that is adapted for use in an order fulfillment facility includes an autonomous mobile vehicle base and a plurality of article receptacles positioned on the base. A visual indicator associated with the receptacle facilitates picking articles to or putting articles from the robotic unit.
Abstract:
In a flexible manufacturing system (FMS), a shelving module of a work cell is fitted with a dedicated lift conveying mechanism so that work materials of desired sizes may be retrieved individually from different shelves or cassettes of the shelving module for conveyance to the machine(s) of the work cell. By having its own dedicated lift conveying mechanism that operates independently from the transport system that transports raw materials to the different work cells of the FMS, the operation of each work cell becomes unaffected by the transport system. As such, for each of the work cells, materials may be fed piecemeal to a machine of the cell for fabrication, if so desired. In the meantime, the various shelves of the shelving module, and other shelving modules, may continue to be re-stocked by the transport system. Any material remnants that prior to the instant invention would have been wasted may be returned to the appropriate shelves of the shelving module for future use by the lift conveying mechanism.
Abstract:
Die Erfindung beschreibt ein Verfahren und eine Positionsregelungseinrichtung (22") zur Steuerung des Betriebes einer rechnergesteuerten Lasttragvorrichtung, mit einem Fahrantrieb für eine Fahreinheit, Hubantrieb für eine vertikal verstellbare Hubeinheit und Stellantrieb für eine Ein- und Auslagervorrichtung, bei dem eine Zielposition der Fahr- und Hubeinheiten sowie Ein- und Auslagervorrichtung von einem Rechner vorgegeben und durch deren Steuerung angefahren wird. Zunächst werden im Hinblick auf die maximal zulässigen Belastungen der Lasttragvorrichtung optimierte und im Hinblick auf die Verstellung zwischen den Start- und Zielpositionen zeitminimierte Referenztrajektorien festgelegt und aus diesen die Solltrajektorien für Sollstellkräfte (F xsoll , F ysoll , F zsoll ) der Fahr- und Hubeinheiten als auch Ein- und Auslagervorrichtung errechnet. Die Fahr-, Hub- und Stellantriebe werden mit den Sollstellkräften (F xsoll , F ysoll , F zsoll ) zyklisch beaufschlagt und durch deren Regelung entlang der SoIltrajektorien geführt, wobei auf der Grundlage der Solltrajektorien, beim geregelten Steuern, die in der Beschleunigungs- und Verzögerungsphase angeregten dynamischen Verformungen der Lasttragvorrichtung bis zum Zeitpunkt der Beendigung der Verzögerungsphase auf Null reduziert werden.
Abstract translation:本发明描述了一种方法和位置控制装置(22“),用于控制计算机控制的承载装置的操作,与用于驱动单元的驱动,升降驱动器为一个垂直可调的提升单元和致动器,用于将输入和-out装置,其中所述车辆的目标位置和 升降单元和输入和-out由计算机指定的并通过它们的控制走近。首先,对于优化的承载装置的最大可允许的负载和限定在的时间最小化的参考轨迹的开始和结束位置所需的轨迹之间,并从这些调整方面 应的致动力(F xsoll SUB> F ysoll SUB> F Zsoll SUB>)驱动的和升降单元和输入和-out计算车辆,中风 - 和致动器与所述期望的定位力(F xsoll SUB> F ysoll SUB> F < SUB> Zsoll SUB>)循环地施加并通过沿SoIltrajektorien控制,其中,所述调节控制,在负载承载装置直到减速阶段的终止的所需轨线的基础上的时间的加速和减速阶段动态变形的兴奋, 被减少到零。
Abstract:
A sortation system is disclosed for providing processing of homogenous and non-homogenous objects in both structured and cluttered environments. The sortation system includes a programmable motion device including an end effector, a perception system for recognizing any of the identity, location, and orientation of an object presented in a plurality of objects, a grasp selection system for selecting a grasp location on the object, the grasp location being chosen to provide a secure grasp of the object by the end effector to permit the object to be moved from the plurality of objects to one of a plurality of destination locations, and a motion planning system for providing a motion path for the transport of the object when grasped by the end effector from the plurality of objects to the one of the plurality of destination locations, wherein the motion path is chosen to provide a path from the plurality of objects to the one of the plurality of destination locations.
Abstract:
The invention concerns a control device for the movement and positioning of a coupling for a marine loading system (2), said marine loading system comprising at least one fluid transfer line having a line end fixed to a base, and a moveable line end provided with a coupling adapted for connection to a target duct, the system further having a plurality of mechanical connections such that the coupling has at least three degrees of freedom relative to the base, the device comprising at least three proportional control actuators (27, 28, 29) each for proportionally controlling the movement of the system in a degree of freedom, a position sensor (30, 31, 32) of the system tracking each degree of freedom, an operator input interface (60) for inputting commands to move the coupling, and a calculator (41) for calculating the instantaneous position of the coupling from the information provided by the sensors, and for calculating, from movement command inputs of the input interface, simultaneous control instructions to give to each of the actuators such that their combined movements result in a movement of the coupling corresponding to the movement command provided by the operator at the input interface.
Abstract:
The invention concerns a control device for the movement and positioning of a coupling for a marine loading system (2), said marine loading system comprising at least one fluid transfer line having a line end fixed to a base, and a moveable line end provided with a coupling adapted for connection to a target duct, the system further having a plurality of mechanical connections such that the coupling has at least three degrees of freedom relative to the base, the device comprising at least three proportional control actuators (27, 28, 29) each for proportionally controlling the movement of the system in a degree of freedom, a position sensor (30, 31, 32) of the system tracking each degree of freedom, an operator input interface (60) for inputting commands to move the coupling, and a calculator (41) for calculating the instantaneous position of the coupling from the information provided by the sensors, and for calculating, from movement command inputs of the input interface, simultaneous control instructions to give to each of the actuators such that their combined movements result in a movement of the coupling corresponding to the movement command provided by the operator at the input interface.
Abstract:
Ein Speicher für Objekte umfasst ein Profilgestell (1) mit mehreren Blechen (2), einen Roboter (4) mit einem Greifer (5), Mittel für die Bestimmung der Lage jedes Blechs (2) in Bezug auf ein durch den Roboter definiertes Koordinatensystem. Jedes Blech enthält einen durch Biegen gebildeten Profilrahmen (28), eine Vielzahl von auf dem Boden angebrachten Noppen (21) sowie eine erste Markierung (22) und zweite Markierungen (23-26). Die Noppen begrenzen Speicherplätze für die Aufnahme je eines Objekts. Auf dem Blech sind mittels der zweitenMarkierungen Eichkörper angeordnet. Die erste Markierung und die Eichkörper dienen für die Bestimmung der Lage des Blechs. Der Roboter weist eine horizontale und eine vertikale lineare Bewegungsachse (8, 9) und eine rotative Bewegungsachse(10) auf.