Abstract:
A material layer stack for a magnetic tunneling junction, the material layer stack including a fixed magnetic layer; a dielectric layer; a free magnetic layer; and an amorphous electrically-conductive seed layer, wherein the fixed magnetic layer is disposed between the dielectric layer and the seed layer. A non-volatile memory device including a material stack including an amorphous electrically-conductive seed layer; and a fixed magnetic layer juxtaposed and in contact with the seed layer. A method including forming an amorphous seed layer on a first electrode of a memory device; forming a material layer stack on the amorphous seed layer, the material stack including a dielectric layer disposed between a fixed magnetic layer and a free magnetic layer, wherein the fixed magnetic layer.
Abstract:
Techniques are disclosed for forming a spin-transfer torque memory (STTM) element having an annular contact to reduce critical current requirements. The techniques reduce critical current requirements for a given magnetic tunnel junction (MTJ), because the annular contact reduces contact size and increases local current density, thereby reducing the current needed to switch the direction of the free magnetic layer of the MTJ. In some cases, the annular contact surrounds at least a portion of an insulator layer that prevents the passage of current. In such cases, current flows through the annular contact and around the insulator layer to increase the local current density before flowing through the free magnetic layer. The insulator layer may comprise a dielectric material, and in some cases, is a tunnel material, such as magnesium oxide (MgO). In some cases, a critical current reduction of at least 10% is achieved for a given MTJ.
Abstract:
Techniques, materials, and circuitry are disclosed which enable low-voltage, embedded memory applications. In one example embodiment, an embedded memory is configured with a bitcell having a memory element and a selector element serially connected between an intersection of a wordline and bitline. The selector element can be implemented, for instance, with any number of crystalline materials that exhibit an S-shaped current-voltage (IV) curve, or that otherwise enables a snapback in the selector voltage after the threshold criteria is exceeded. The snapback of the selector is effectively exploited to accommodate the ON-state voltage of the selector under a given maximum supply voltage, wherein without the snapback, the ON-state voltage would exceed that maximum supply voltage. In some example embodiments, the maximum supply voltage is less than 1 volt (e.g., 0.9 volts or less).
Abstract:
Methods of forming hetero-layers with reduced surface roughness and bulk defect density on non-native surfaces and the devices formed thereby are described. In one embodiment, the method includes providing a substrate having a top surface with a lattice constant and depositing a first layer on the top surface of the substrate. The first layer has a top surface with a lattice constant that is different from the first lattice constant of the top surface of the substrate. The first layer is annealed and polished to form a polished surface. A second layer is then deposited above the polished surface.
Abstract:
Semiconductor structures having integrated double-wall capacitors for eDRAM and methods to form the same are described. For example, an embedded double-wall capacitor includes a trench disposed in a first dielectric layer disposed above a substrate. The trench has a bottom and sidewalls. A U-shaped metal plate is disposed at the bottom of the trench, spaced apart from the sidewalls. A second dielectric layer is disposed on and conformal with the sidewalls of the trench and the U-shaped metal plate. A top metal plate layer is disposed on and conformal with the second dielectric layer.
Abstract:
A method to reduce contact resistance of n-channel transistors by using a III-V semiconductor interlayer in source and drain is generally presented. In this regard, a device is introduced comprising an n-type transistor with a source region and a drain region a first interlayer dielectric layer adjacent the transistor, a trench through the first interlayer dielectric layer to the source region, and a conductive source contact in the trench, the source contact being separated from the source region by a III-V semiconductor interlayer. Other embodiments are also disclosed and claimed.
Abstract:
Quantum- well-based semiconductor devices and methods of forming quantum- well-based semiconductor devices are described. A method includes providing a hetero- structure disposed above a substrate and including a quantum-well channel region. The method also includes forming a source and drain material region above the quantum-well channel region. The method also includes forming a trench in the source and drain material region to provide a source region separated from a drain region. The method also includes forming a gate dielectric layer in the trench, between the source and drain regions; and forming a gate electrode in the trench, above the gate dielectric layer.
Abstract:
Techniques are disclosed for providing a low resistance self-aligned contacts to devices formed in a semiconductor heterostructure. The techniques can be used, for example, for forming contacts to the gate, source and drain regions of a quantum well transistor fabricated in III-V and SiGe/Ge material systems. Unlike conventional contact process flows which result in a relatively large space between the source/drain contacts to gate, the resulting source and drain contacts provided by the techniques described herein are self-aligned, in that each contact is aligned to the gate electrode and isolated therefrom via spacer material.
Abstract:
Quantum- well-based semiconductor devices and methods of forming quantum- well-based semiconductor devices are described. A method includes providing a hetero- structure disposed above a substrate and including a quantum-well channel region. The method also includes forming a source and drain material region above the quantum-well channel region. The method also includes forming a trench in the source and drain material region to provide a source region separated from a drain region. The method also includes forming a gate dielectric layer in the trench, between the source and drain regions; and forming a gate electrode in the trench, above the gate dielectric layer.
Abstract:
A contact to a source or drain region. The contact has a conductive material, but that conductive material is separated from the source or drain region by an insulator.