摘要:
Disclosed herein are processes and systems that utilize olefin cross metathesis of triglycerides to produce jet fuel such as hydrocarbons with carbons numbers from C9 to Cl 6. Jet range hydrocarbons may include paraffins, naphthenes, and aromatics with carbon numbers from 9 to 16 (C9-C16), and isomers thereof. The process described herein is versatile and may be suitable for producing jet range hydrocarbons from many different grades and sources of triglycerides. Further, the process described herein may be selective to jet range hydrocarbons which may result in increased yield as compared to hydrocracking or other processes for producing jet range hydrocarbons from triglycerides.
摘要:
Embodiments in accordance with the present invention encompass an organorutheniumcompound of the formula I:(I)wherein X, Y, L1, L2, L3, R1 and R2 are as defined herein. Also disclosed herein are the use of organoruthenium compound of the formula I as (pre)catalysts for the olefin metathesis reactions, as well as to the process for carrying out the olefin metathesis reaction.
摘要:
The invention provides a method for synthesizing a fatty olefin derivative. In some embodiments, the method includes: a) contacting an unsaturated olefin with an unsaturated fatty acid ester in the presence of a metathesis catalyst under conditions sufficient to form a metathesis product and b) converting the metathesis product to the fatty olefin derivative. In certain embodiments, the metathesis catalyst is a tungsten catalyst or a molybdenum catalyst. In various embodiments, the fatty olefin derivative is an insect pheromone. Pheromone compositions and methods of using them are also described.
摘要:
The present invention relates to compositions comprising alkene benzenes or alkene benzene sulfonates or alkylbenzenes or alkylbenzene sulfonates; methods for making alkene benzenes or alkene benzene sulfonates or alkylbenzenes or alkylbenzene sulfonates; where the benzene ring is optionally substituted with one or more groups designated R*, where R* is defined herein. More particularly, the present invention relates to compositions comprising 2-phenyl linear alkene benzenes or 2-phenyl linear alkene benzene sulfonates or 2-phenyl linear alkylbenzenes or 2-phenyl linear alkylbenzene sulfonates; methods for making 2-phenyl alkene benzenes or2-phenyl alkene benzene sulfonates or2-phenyl alkylbenzenes or 2-phenyl alkylbenzene sulfonates; where the benzene ring is optionally substituted with one or more groups designated R*, where R* is defined herein.
摘要:
Disclosed is a method of producing an organic compound. The method uses a metathesis catalyst in a coupling reaction of an olefin. The method comprises the steps of introducing the olefin into a container; either placing the container under vacuum or bubbling a gas through the olefin; adding an additive with the olefin; mixing the olefin and the additive, the mixing creating a mixture; adding an amount of the metathesis catalyst to the mixture, the amount being less than about 100 ppm by weight of the mixture; and optionally heating the mixture to a temperature, the temperature being greater than room temperature.
摘要:
Methods are provided for refining natural oil feedstocks. The methods comprise reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters. In certain embodiments, the methods further comprise separating the olefins from the esters in the metathesized product. In certain embodiments, the methods further comprise hydrogenating the olefins under conditions sufficient to form a fuel composition. In certain embodiments, the methods further comprise transestehfying the esters in the presence of an alcohol to form a transesterified product.
摘要:
Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.
摘要:
The present invention relates to catalysts comprising at least one metal complex with at least two ligands which each have at least one pnicogen atom and at least one functional group capable of forming intermolecular, ionic interactions, wherein the complex has ligands which are dimerized via intermolecular ionic interactions, and also processes for reacting compounds which contain at least one carbon-carbon or carbon-heteroatom double bond by 1,2-addition in the presence of the catalysts of the invention.
摘要:
The present invention provides heterogeneous organometallic catalysts for alkyne metathesis, including the metathesis of internal alkynes. Organometallic precursors are covalently bonded to the oxygen atoms of metal oxide supports to form catalysts having carbyne functionality. The heterogeneous catalysts provide improved turn-over frequencies at lower reaction temperatures than conventional catalysts.
摘要:
The invention pertains to the use of Group 8 transition metal carbene complexes as catalysts for olefin cross-metathesis reactions. In particular, ruthenium and osmium alkylidene complexes substituted with an N-heterocyclic carbene ligand are used to catalyze cross-metathesis reactions to provide a variety of substituted and functionalized olefins, including phosphonate-substituted olefins, directly halogenated olefins, 1,1,2-trisubstituted olefins, and quaternary allylic olefins. The invention further provides a method for creating functional diversity using the aforementioned complexes to catalyze cross-metathesis reactions of a first olefinic reactant, which mayor may not be substituted with a functional group, with each of a plurality of different olefinic reactants, which may or may not be substituted with functional groups, to give a plurality of structurally distinct olefinic products. The methodology of the invention is also useful in facilitating the stereoselective synthesis of 1,2-disubstituted olefins in the cis configuration.