特高压变压器内部绝缘隔板几何位置偏移的检测方法

    公开(公告)号:CN116908857A

    公开(公告)日:2023-10-20

    申请号:CN202310853725.4

    申请日:2023-07-12

    IPC分类号: G01S15/89 G01S7/52

    摘要: 本发明提供了一种特高压变压器内部绝缘隔板几何位置偏移的检测方法,属于变压器检测技术领域。包括:将检测装置贴合在变压器表面上的第一位置;所述检测装置包括N个沿直线等间距阵列分布的超声波探头;利用所述检测装置进行全聚焦成像,获取一组全聚焦成像数据;将所述检测装置整体平移固定距离至下一位置并进行全聚焦成像,循环执行直至覆盖所有被检区域,获取M组全聚焦成像数据。依据M组全聚焦成像数据获取检测区域的三维成像数据;通过三维成像数据获取变压器绝缘隔板的几何偏移数据。本发明能够获取变压器内部绝缘隔板的三维立体成像,可以从多个角度观察绝缘隔板,能够更全面地了解其形态和位置,有助于发现细微的几何偏移和异常情况。

    提升泛化能力的区域供热负荷集成预测系统和方法

    公开(公告)号:CN117973608A

    公开(公告)日:2024-05-03

    申请号:CN202410124635.6

    申请日:2024-01-29

    摘要: 本发明属于区域供热负荷预测领域,具体涉及一种提升泛化能力的区域供热负荷集成预测系统和方法,该方法首先采集区域内多台供热机组供热量和相关的气象数据并对其进行预处理,根据预处理后的数据构建特征数据指标体系,构建多算法融合的集成人工智能模型,将特征数据指标体系对模型进行训练,得到训练后的集成学习各模型预测结果;解决了多元线性回归模型在气温发生大幅度变化时预测值与实际值偏差较大的问题,以及供热面积变化时历史供热数据无法用于建立预测模型而新的供热数据过少也无法建立模型的问题。该方法能够用于实现对供热系统采暖热负荷的短期预测,热负荷预测精确度高,具有很强的实际应用价值。

    检测转子绕组匝间短路的有效性验证方法

    公开(公告)号:CN116736205A

    公开(公告)日:2023-09-12

    申请号:CN202211518644.0

    申请日:2022-11-29

    IPC分类号: G01R35/00 G01R31/52 G01R31/72

    摘要: 本发明属于有效性验证方法技术领域,具体涉及检测转子绕组匝间短路的有效性验证方法,该方法将通过有限元仿真所构建的空载电动势关于励磁电流的函数作为任意励磁电流下的期望空载电动势计算表达式,通过有限元软件仿真调相机短路和强励两种暂态过程,获取电气状态量的有效值,按照向量关系求取空载电动势。将上述期望电动势与调相机短路和强励两种暂态过程的实际电动势相比较,根据两者的偏差是否大于转子绕组匝间短路故障判别阈值来验证期望电动势法在调相机暂态过程检测转子绕组匝间短路的有效性。本发明提出的基于期望电动势法在调相机暂态过程检测转子绕组匝间短路的有效性验证方法,避免了真机实验以及故障模拟所带来得经济成本和安全风险。

    一种软体机器人滑模控制方法
    6.
    发明公开

    公开(公告)号:CN114740724A

    公开(公告)日:2022-07-12

    申请号:CN202210406927.X

    申请日:2022-04-18

    IPC分类号: G05B13/04

    摘要: 本发明提供了一种软体机器人滑模控制方法,滑模控制方法包括以下步骤:设计滑模观测器,根据滑模观测器的结构得到估计误差动态方程,用滑块区域简化估计误差动态方程;建立软体机器人的动力学模型,定义期望轨迹和跟踪误差,将期望轨迹和跟踪误差代入软体机器人的动力学模型得到跟踪误差模型;设计控制器,设计补偿器,定义滑模面;证明系统的稳定性和系统一直驻留在滑块区域内。观测器解决了软体机器人因其柔性本体结构无法测量角速度信息造成追踪精度低的问题,用滑块区域简化滑模观测器的估计误差动态方程减少了参数便于工程实现,采用滑模算法解决了机器人存在系统不确定项的鲁棒控制问题,通过对比仿真和实验验证了所提方法的有效性。

    一种火电机组一次调频的控制方法及系统

    公开(公告)号:CN111756055A

    公开(公告)日:2020-10-09

    申请号:CN202010617134.3

    申请日:2020-06-30

    IPC分类号: H02J3/24

    摘要: 本申请涉及一种火电机组一次调频的控制方法及系统,当系统发生频率小扰动时,以电网频差为输入进行一次调频;当系统发生频率大扰动时,以电网频差变化率为输入进行一次调频。本发明能够实现频率小扰动和大扰动的区别控制,不需要等待系统频率下降的过程,大大提升火电机组的一次调频调节速度,改善系统频率。解决现有技术中由于火电机组的功率调节速度较快,不能及早辨识得到系统频率的跌落深度,在等待系统频率下降后再进行调频作用,不利于系统频率恢复的问题。