Abstract:
A scanning confocal microscopy system and apparatus, especially useful for endoscopy with a flexible probe which is connected to the end of an optical fiber (9). The probe has a grating (12) and a lens (14) which delivers a beam of multi-spectral light having spectral components which extend in one dimension across a region of an object and which is moved to scan in another dimension. The reflected confocal spectrum is measured to provide an image of the region.
Abstract:
An optical filter and a light splitting method of the optical filter are provided. The optical filter includes a beam incidence portion, a programmable Micro Electro-Mechanical System (MEMS) grating, a beam receiving portion, and a drive and control module, where relative positions of the beam incidence portion, the programmable MEMS grating, and the beam receiving portion are fixed and are set in order that the beam receiving portion is located in an emergence direction of the multi-wavelength beam after the multi-wavelength beam is incident onto the programmable MEMS grating from the beam incidence portion so that the beam receiving portion is capable of receiving a beam with a specific wavelength. The optical filter is capable of freely and conveniently selecting the beams with a specific wavelength, and meanwhile, the optical filter has the advantages of a small size, and being easily controlled and integrated.
Abstract:
The invention relates to an aeronautical vehicle (2) comprising a spectrometer (4) suitable for generating a spectral analysis of radiation reflected by a portion (12) of the earth's surface, the vehicle (2) being in orbit around the earth and moving relative to the earth's surface. The spectrometer includes a filter (14) capable of filtering light in a narrow spectral band of incident radiation depending on the angle of incidence of said radiation on the filter; said filtered spectral band being capable of varying continuously in a broader spectral range when the angle of incidence of said incident radiation varies continuously. The vehicle (2) includes means (6, 8) for determining the spectral band of filtered radiation from a single surface portion (12) for a plurality of positions of the vehicle (2) relative to the surface portion (12).
Abstract:
The bandwidth selection mechanism includes a first actuator mounted on a second face of a dispersive optical element, the second face being opposite from a reflective face, the first actuator having a first end coupled to a first end block and a second end coupled to a second end block, the first actuator being operative to apply equal and opposite forces to the first end block and the second end block to bend the body of the dispersive optical element along the longitudinal axis of the body and in a first direction normal to the reflective face of the dispersive optical element. The bandwidth selection mechanism also includes a second actuator being operative to apply equal and opposite forces to bend the body along the longitudinal axis of the body, in a second direction perpendicular to the reflective face of the dispersive optical element.
Abstract:
An apparatus and source arrangement for filtering an electromagnetic radiation can be provided which may include at least one spectral separating arrangement (200) configured to physically separate one or more components (320, 340) of the electromagnetic radiation based on a frequency of the electromagnetic radiation. The apparatus and source arrangement may also have at least one continuously rotating optical arrangement, e.g., a spinning reflector disk scanner (500), which is configured to receive at least one signal that is associated with the one or more components (320, 340). Further, the apparatus and source arrangement can include at least one beam selecting arrangement configured to receive the signal. Rotating disk (500) may comprise reflecting patterns (520) to generate a wavelength scan depending on the rotation frequency of the disk (500).
Abstract:
A robust, compact spectrometer apparatus for determining respective concentrations or partial pressures of multiple gases in a gas sample with single as well as multiple and even overlapping, absorption or emission spectra that span a wide spectral range.
Abstract:
In one general aspect, a spectroscopic method for monitoring heterogeneity of a sample is disclosed. In this method, sampled spectroscopic measurements are acquired over a range of different micro locations in a macro-sample of the sample. This step is repeated for micro-locations in further macro-samples of the sample, and a statistical measure of chemical heterogeneity is derived from the acquisitions. In another general aspect, differently sized samples are acquired, and a statistical measure of chemical heterogeneity is derived from these acquisitions.
Abstract:
A spectrophotometer has a first photodetector (24) and a second photodetector (25) which is displaced spatially from the first photodetector in the direction of increasing wavelength in the spectrum. At any given time the second photodetector receives light at a wavelength which is substantially greater than that being received simultaneously by the first photodetector at that time. The first photodetector has a first range of wavelengths over which it is operable and a first upper operating limit, and the second photodetector has a second range of wavelengths over which it is operable and a second upper operating limit, the second range overlapping the first range and the second upper operating limit being greater than the first upper operating limit. Thus the range of operation is extended, and data in two different ranges is processed simultaneously. The spectrophotometer comprises a housing (1) containing a light source (11), a monochromator (15, 16, 18) and the photodetectors, there being a fibre optic connected to a probe (2) for transmitting light from the light source to a sample to be analysed and receiving light from the sample. Optical components are mounted to a chassis (26) of the housing rigidly, the chassis being connected to the housing by shock absorbing mounts (28, 29). The light source is mounted to the housing by means of an adjuster (24) providing for adjustment laterally with respect to the optical axis of the light source.