Abstract:
The apparatus and methods herein provide quantitatively controllable light sources and expanded dynamic range endoscopy systems that can improve the quality of images and the ability of users to distinguish desired features when viewing tissues by providing methods and apparatus that improve the dynamic range of images from endoscopes, in particular for example with endoscopes that have dynamic range limited because of small image sensors and small pixel electron well capacity, and other optical system constraints. The apparatus and methods herein, for example, combine light sources with quantitatively variable spectral output and quantitatively variable wavelength dependent intensity distribution with image sensors and controllers to create an expanded dynamic range endoscopy system. By digitally combining illumination data from the digitally controllable light source with the digital image data from the image sensor the system synthesizes expanded dynamic range images whose dynamic range exceeds the dynamic range of the image sensor alone thus providing greatly enhanced information content in the acquired images.
Abstract:
Es wird eine Vorrichtung zur wahlweisen Messung von insbesondere Lumineszenz- und/oder Fluoreszenzstrahlung aus mindestens einem Probenbehälter (11) mittels mindestens einer Lichtquelle (50) im Anregungslichtpfad (AF) für Fluoreszenzmessungen und mindestens einem Detektor (40) mit einem Wellenlängenselektor im Emissionslichtpfad (EF) beschrieben. Um mit einem gemeinsamen Emissionslichtpfad sowohl für Fluoreszenz als auch für Lumineszenz die gleiche Empfindlichkeit erreichen zu können, ist der Emissionslichtpfad (EF) zwischen dem zumindest einen Probenbehälter (11) und dem Wellenlängenselektor durch mindestens ein erstes, eine Reflexionskammer (R) umschließendes Reflektorelement (20) geführt, das zumindest einen Teil des vom Probenbehälter (11) emittierten Lichts gerichtet auf den Wellenlängenselektor wirft, wobei der Anregungslichtpfad (AF) in der Reflexionskammer (R) bis oberhalb des Probenbehälters (11) geführt ist.
Abstract:
A spectroanalytical system for receiving radiation to be analyzed along a first path includes a grating in the first path with periodic faceted grooves for spatially separating the radiation as a function of wavelength. The blaze angles of the faceted grooves are progressively graded. A multielement detector detects radiation spatially separated by the grating. An optical conditioner is disposed in the first path between the grating and a multielement detector.
Abstract:
A device for determining the surface topology and associated colour of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing colour data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the colour data and depth data for each point in the array, thereby providing a three-dimensional colour virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated colour of a structure is also provided.
Abstract:
Low cost and form factor spectrometers are disclosed. A spectrometer comprises a substrate, a plurality of optical sensors (979), a plurality of spectral filters (977), an optical manifold (976) and one or more processing elements (980). The plurality of spectral filters (977) and the one or more processing elements (980) are mounted on the substrate. The spectral filters (977) are fixedly positioned over at least a group of the optical sensors (979) and fixedly positioned with respect to the substrate. An optical manifold (976) is fixedly positioned over the spectral filters (977). The optical manifold (976) has a plurality of exit ports and an entrance port, wherein light entering the entrance port is transmitted to an interior portion of the optical manifold (976) and a portion of the light is transmitted from the exit ports through some of the spectral filters (977). The spectrometers are disclosed embedded in printing and scanning devices, computer companion devices, scope-type devices and the like.
Abstract:
An electron microscope (10) is adapted to enable spectroscopic analysis of a sample (16). A parabolic mirror (18) has a central aperture (20) through which the electron beam can pass. The mirror (18) focuses laser illumination from a transverse optical path (24) onto the sample, and collects Raman and/or other scattered light, passing it back to an optical system (30). The mirror (18) is retractable (within the vacuum of the electron microscope) by a sliding arm assembly (22).
Abstract:
There is provided a small sized imaging apparatus which can measure with high accuracy a color distribution of a surface of an object, in which a light intensity distribution on a predetermined surface in a direction substantially perpendicular to an optical axis is uniform, and a change in an amount of light in a direction along the optical axis is reduced, and an illuminating unit which used in this imaging apparatus. (The imaging apparatus) Includes a light source section (210) which supplies illuminating light, a diffusing section (211) which diffuses by reflecting the illuminating light from the light source section (210), and aperture sections (212a and 212b) which allow to emerge diffused illuminating light, and the aperture sections (212a and 212b) has an aperture diameter D which allows the diffused illuminating light to emerge as a substantially parallel light.
Abstract:
The apparatus and methods herein provide quantitatively controllable light sources and expanded dynamic range endoscopy systems that can improve the quality of images and the ability of users to distinguish desired features when viewing tissues by providing methods and apparatus that improve the dynamic range of images from endoscopes, in particular for example with endoscopes that have dynamic range limited because of small image sensors and small pixel electron well capacity, and other optical system constraints. The apparatus and methods herein, for example, combine light sources with quantitatively variable spectral output and quantitatively variable wavelength dependent intensity distribution with image sensors and controllers to create an expanded dynamic range endoscopy system. By digitally combining illumination data from the digitally controllable light source with the digital image data from the image sensor the system synthesizes expanded dynamic range images whose dynamic range exceeds the dynamic range of the image sensor alone thus providing greatly enhanced information content in the acquired images.
Abstract:
Method and apparatus for analyzing radiation using analyzers (100) where encoding of selected spectral or spatial components is achieved by spatially varying the reflectance properties of a rotating spatial radiation modulators (22). Input radiation from light source (24) is passed into the analyzer and the encoded beams are directed onto one or more detectors.