Abstract:
An insulating adhesive film and an anisotropically electroconductive adhesive film satisfying low-temperature curability, high adhesion and high reliability are provided. An anisotropically electroconductive adhesive film of the present invention is so configured that electroconductive particles 7 are dispersed in an insulating adhesive resin 6, comprising as main components: a radical polymerizable resin component having an unsaturated double bond; a resin component having no unsaturated double bond; a phosphoric acid-containing resin component; and a radical polymerization initiator.
Abstract:
There is provided a substrate material for wiring having an excellent thermal resistance, and durability and reliability under severe conditions, characterized in that said substrate material comprises an insulator whose major component is composed of epoxy resin and ceramics having a thermal expansion coefficient of 2 ppm/°C or less, and that the thermal expansion coefficient is isotropic.
Abstract:
The present invention provides glass fiber strands impregnated with non-abrasive solid particles which provide interstitial spaces of at least 3 micrometers between adjacent fibers within a strand which are useful for reinforcing composites.
Abstract:
A base material for printed wiring boards is formed by laminating together layers of prepregs of woven cloth impregnated with a thermosetting polymeric resin varnish. The varnish has an inorganic filler which is present in an amount sufficient to provide the base material with an average coefficient of thermal expansion along its Z-axis between 30°C and 270°C which is equal to or less than the coefficient of thermal expansion of copper from 30°C to 270°C plus the maximum elongation at 270°C of copper suitable for forming a conductive pattern on hole walls of printed wiring boards. Printed wiring boards manufactured on the base material by additive or subtractive processes are resistent to failure from thermal stress or thermal cycling.
Abstract:
A metal foil-clad laminate obtained by lamination molding a resin-impregnated substrate and a metal foil, wherein the resin-impregnated substrate contains from 5 to 30% by weight of at least one inorganic filler selected from the group consisting of calcined kaolin, spherical fused silica, non-swellable synthetic mica, and a glass fine powder, the filler having an average particle diameter of from 0.1 to 5 µm and at least 90 wt% of the filler having a particle diameter of from 0.02 to 5 µm, and the resin-impregnated substrate is used as at least a surface layer of the laminate or as a resin-impregnated substrate which adheres the metal foil, thereby providing a surface smooth metal foil-clad laminate having a diminished surface undulation attributable to the substrate.
Abstract:
A flame retardant, low dielectric constant, controlled coefficient of thermal expansion, low cost prepreg material which includes randomly distributed silane coated hollow microspheres has been prepared by standard impregnation and lamination techniques. Laminates made of this prepreg can be drilled cleanly for through holes and can be used as a substrate for surface mounted devices.
Abstract:
A base material for printed wiring boards is formed by laminating together layers of prepregs of woven cloth impregnated with a thermosetting polymeric resin varnish. The varnish has an inorganic filler which is present in an amount sufficient to provide the base material with an average coefficient of thermal expansion along its Z-axis between 30°C and 270°C which is equal to or less than the coefficient of thermal expansion of copper from 30°C to 270°C plus the maximum elongation at 270°C of copper suitable for forming a conductive pattern on hole walls of printed wiring boards. Printed wiring boards manufactured on the base material by additive or subtractive processes are resistent to failure from thermal stress or thermal cycling.