Abstract:
A spectrometer comprises a light detection element provided with a light passing part (21) and a light detection part (22); a support (30) fixed to the light detection element such that a space (S) is formed between the light passing part and the support; a first reflection part (11) provided in the support and configured to reflect light passing through the light passing part in the space; a dispersive part (42) provided in the light detection element and configured to disperse and reflect the light reflected by the first reflection part in the space; and a second reflection part (41) provided in the support and configured to reflect the light dispersed and reflected by the dispersive part to the light detection part in the space.
Abstract:
There is provided a substance detecting device emits first invisible light to the inside and the outside of a detection region of a substance, changes an emitting direction of the first invisible light inside and outside the detection region, receives third invisible light which is passing light of the first invisible light through the reference cell in which a detection target substance is stored, outside of the detection region, and adjusts a temperature of the first invisible light and controls the wavelength of the first invisible light based on the wavelength characteristics of the third invisible light.
Abstract:
Various embodiments disclosed herein describe an infrared (IR) imaging system for detecting a gas. The imaging system can include an optical filter that selectively passes light having a wavelength in a range of 1585 nm to 1595 nm while attenuating light at wavelengths above 1600 nm and below 1580 nm. The system can include an optical detector array sensitive to light having a wavelength of 1590 that is positioned rear of the optical filter.
Abstract:
A light detection device 1A includes a Fabry-Perot interference filter 10, a light detector 3, a spacer 4 that has a placement surface on which a portion outside a light transmission region 11 in a bottom surface of the interference filter 10 is placed, and an adhesive member 5 that adheres the interference filter 10 and the spacer 4 to each other. Elastic modulus of the adhesive member 5 is smaller than elastic modulus of the spacer 4. At least a part of a lateral surface of the interference filter 10 is located on the placement surface such that a part of the placement surface of the spacer 4 is disposed outside the lateral surface. The adhesive member 5 is disposed in a corner portion formed by the lateral surface of the interference filter 10 and the part of the placement surface of the spacer 4 and contacts each of the lateral surface and the part of the placement surface.
Abstract:
Die Erfindung betrifft ein Verfahren zur Ermittlung zumindest einer Prüfeigenschaft eines Prüfgegenstands und eine Messvorrichtung, welche geeignet ist, ein Messfeld (3) unter einer Vielzahl an Anstrahlungskombinationen aus Einstrahlungswinkel (α) und/oder Wellenlängenbereich (A) mit elektromagnetischer Strahlung (5) anzustrahlen und die Intensität der jeweils von dem Messfeld unter zumindest einem Abstrahlungswinkel (β) remittierten elektromagnetischen Strahlung (5) zu messen. Die Prüfeigenschaft weist zumindest ein definiertes messbares Einzelmerkmal auf, wobei das Einzelmerkmal oder eine definierte Merkmalskombination mehrerer solcher Einzelmerkmale die Herkunft und/oder Identität des Prüfgegenstandes (1) belegt, wobei das Einzelmerkmal oder die Merkmalskombination messbar ist, wenn sie durch die elektromagnetische Strahlung (5) auf eine durch eine Auswahl an Anstrahlungkombinationen definierte Art und Weise optisch angeregt wird. Das Einzelmerkmal oder die Merkmalskombination wird mit der Messvorrichtung (4) in dieser Art und Weise angeregt und gemessen.
Abstract:
A mirror plate (100) for a Fabry-Perot interferometer (300) comprises: - a substrate (50), which comprises silicon (Si), - a semi-transparent reflective coating (110) implemented on the substrate (50), - a de-coupling structure (DC1) formed on the substrate (50), - a first sensor electrode (G1a) formed on top of the de-coupling structure (DC1), and - a second sensor electrode (G1b), wherein the de-coupling structure (DC1) comprises an electrically insulating layer (60a), and a first stabilizing electrode (G0a), which is located between the first sensor electrode (G1a) and the substrate (50).