摘要:
The present invention provides a micro-electro-mechanical system (MEMS) optical device (100). The micro-electro-mechanical system (MEMS) optical device (100) includes a mirror (110) having a substrate (140) with an implanted light reflective optical layer (130) thereover, and a mounting substrate (120) on which the mirror (110) is movably mounted. The inclusion of the dopant (150) within the light reflective optical layer (130) increases the tensile stress of the device (100) and tends to correct the concave curvature of the mirror structure toward a desirably flat configuration.
摘要:
The present invention provides a micro-electro-mechanical system (MEMS) optical device (100). The micro-electro-mechanical system (MEMS) optical device (100) includes a mirror (110) having a substrate (140) with an implanted light reflective optical layer (130) thereover, and a mounting substrate (120) on which the mirror (110) is movably mounted. The inclusion of the dopant (150) within the light reflective optical layer (130) increases the tensile stress of the device (100) and tends to correct the concave curvature of the mirror structure toward a desirably flat configuration.
摘要:
A new bulk resonator may be fabricated by a process that is readily incorporated in the traditional fabrication techniques used in the fabrication of monolithic integrated circuits on a wafer. The resonator is decoupled from the wafer by a cavity etched under the resonator using selective etching through front openings (vias) in a resonator membrane. In a typical structure the resonator is formed over a silicon wafer by first forming a first electrode, coating a piezoelectric layer over both the electrode and the wafer surface and forming a second electrode opposite the first on the surface of the piezoelectric layer. After this structure is complete, a number of vias are etched in the piezoelectric layer exposing the surface under the piezoelectric layer to a selective etching process that selectively attacks the surface below the piezoelectric layer creating a cavity under the resonator.
摘要:
A new bulk resonator may be fabricated by a process that is readily incorporated in the traditional fabrication techniques used in the fabrication of monolithic integrated circuits on a wafer. The resonator is decoupled from the wafer by a cavity etched under the resonator using selective etching through front openings (vias) in a resonator membrane. In a typical structure the resonator is formed over a silicon wafer by first forming a first electrode, coating a piezoelectric layer over both the electrode and the wafer surface and forming a second electrode opposite the first on the surface of the piezoelectric layer. After this structure is complete, a number of vias are etched in the piezoelectric layer exposing the surface under the piezoelectric layer to a selective etching process that selectively attacks the surface below the piezoelectric layer creating a cavity under the resonator.
摘要:
An actuation device employing square-loop latchable magnetic material (14, 16) having a magnetization direction (polarization) capable of being changed in response to exposure to an external magnetic field is disclosed. The magnetic field is created by a conductor assembly with non-solenoid configuration. Once the magnetization direction of the material is so changed, the external magnetic field is no longer required to maintain the new magnetization direction. The latchable magnetic material (14) is disposed on the mobile electrode (20) of a switching device, and another magnetic material (16) is disposed in spaced relation to the latchable magnetic material on a stationary electrode or surface (28). By applying an electrical current to a conductor assembly arranged proximate the latchable material, a magnetic field is created about the latchable magnetic material, to change the magnetization direction and thereby enable the attraction or repulsion of another magnetic material located on the stationary electrode. The resulting relative displacement of the mobile (20) and stationary (18) electrodes effects the selective connection or disconnection of electrical contacts carried on or associated with the respective electrodes of the actuation device without requiring additional power in order to maintain the switched state of the electrodes.
摘要:
A device having electrical contacts formed from an alloy having improved wear resistance is provided, the alloy being particularly useful in microrelay devices formed by MEMS technology. In one embodiment, the alloys are chosen to allow sufficient precipitation hardening to improve wear resistance, but keep precipitation below a level that would unacceptably reduce electrical conductivity. This is achieved by using alloying materials that have very limited or no solid solubility in the noble metal matrix, e.g., less than 4 wt.% solid solubility. In a second embodiment, an alloy contains a noble metal matrix and insoluble, dispersoid particles having no solubility in the matrix, these dispersoid particles offering a similar strengthening mechanism.
摘要:
A package (10) for hermetically sealing a micro-electromechanical systems (MEMS) device (25) in a hybrid circuit comprise a firewall (30) formed on a substrate (40) for the MEMS device and which has a height defining a cavity of the package in which the MEMS device will be sealed. A second substrate (70) spaced from the first substrate hermetically seals the cavity when the second substrate is flip-chip bonded to the first substrate and soldered to the first substrate with a thin film metal material placed on at least a top portion of the firewall. The resulting firewall MEMS device package can be further packaged using conventional CMOS packaging techniques. By hermetically sealing the cavity, the enclosed MEMS device is protected from deleterious conditions found in the environment of conventional CMOS packaging techniques which is often detrimental to MEMS device function.
摘要:
Hybrid integrated circuits comprise a micro-electro mechanical systems (MEMS) relay which is flip-chip bonded to a CMOS chip. By bonding the CMOS chip to the MEMS micro-relay, a robust electrical connection is made between the relayed chip for high integrity electrical transmission through the hybrid circuit. Moreover, the electrical signal propagation delays between the CMOS and MEMS chips are greatly reduced to thereby allow the hybrid integrated circuits to be used in high bandwidth applications.