摘要:
The present disclosure discloses an electric vehicle and an active safety control system and method thereof. The system includes: a wheel speed detection module configured to detect a wheel speed to generate a wheel speed signal; a steering wheel rotation angle sensor and a yaw rate sensor module, configured to detect state information of the electric vehicle; a motor controller; and an active safety controller configured to receive the wheel speed signal and state information, obtain state information of a battery pack and state information of four motors, obtain a first side slip signal or a second side slip signal according to the wheel speed signal, the state information, the battery pack and the four motors, and according to the first side slip signal or the second side slip signal, control four hydraulic brakes of the electric vehicle and control the four motors by using the motor controller.
摘要:
The present invention provides a method for controlling an engine unit in a vehicle. The vehicle includes an engine unit, a transmission unit adapted to selectively couple with the engine unit and also configurd to transmit the power generated by the engine unit, a first motor generator coupled with the transmission unit, an output unit, a power switching device, a second motor generator configured to drive at least one of front and rear wheels, and a power battery that is respectively connected to the first motor generator and the second motor generator. The method includes: acquiring an operating mode of a vehicle and an operating parameter of the vehicle; and controlling an engine unit according to an operating parameter and an operating mode to start or stop.
摘要:
A speed reducer, a power system, a straddle-type rail train, and a rail transit system are disclosed. The speed reducer includes: a box body; a speed reducing mechanism, disposed in the box body; and a support shaft, a first end of the support shaft being supported on the box body, and a second end of the support shaft being connected to a high speed end of the speed reducing mechanism. The speed reducer according to the present disclosure achieves a more stable connection between a drive shaft and a speed reducing mechanism and a more stable power transmission.
摘要:
The present disclosure provides a drive control method, a drive control device of a hybrid electric vehicle and a hybrid electric vehicle. The drive control method includes: obtaining a current gear position of the hybrid electric vehicle, a current electric charge level of a power battery and a slope of a road on which the hybrid electric vehicle is driving; obtaining a current speed of the hybrid electric vehicle if the current gear position of the hybrid vehicle, the current electric charge level of the power battery, and the slope of the road on which the hybrid electric vehicle is driving meet a preset requirement; and causing the hybrid electric vehicle to enter a small load stop mode if the current speed is greater than or equal to a first speed threshold, and less than a second speed threshold.
摘要:
A transmission unit includes: input shafts, each of the input shafts being provided with a shift driving gear thereon; output shafts, each of the output shafts being provided with a shift driven gear configured to mesh with a corresponding shift driving; a motor power shaft configured to rotate together with one of the output shafts; and an output unit configured to rotate with one of the output shafts at different speeds and configured to selectively engage with one of the output shafts so as to rotate together with one of the output shafts. A power transmission system including the transmission unit and a vehicle including the power transmission system are also provided.
摘要:
The present disclosure discloses a vehicle and a braking feedback control method for the same. The braking feedback control method includes the following steps: detecting the current speed of a vehicle and the depth of a braking pedal of the vehicle; when the current speed of the vehicle is greater than a preset speed, the depth of the braking pedal is greater than 0, and an anti-lock braking system of the vehicle is in a non-working state, controlling the vehicle to enter a braking feedback control mode, where when the vehicle is in the braking feedback control mode, a required braking torque corresponding to the vehicle is obtained according to the depth of the braking pedal, and a braking torque of a first motor generator, a braking torque of a second motor generator, and a braking torque of basic braking performed on the vehicle are distributed according to the required braking torque.
摘要:
The present invention discloses a locking device, a power assembly, a power transmission system and a vehicle. The locking device includes: a first flange and a second flange; and first and second flange locking structures, the first and second flange locking structures each being used for selectively locking the first flange and the second flange to be adapted to rotate the second flange synchronously with the first flange or adapted to rotate the first flange synchronously with the second flange; wherein the first and second flange locking structures each include: a synchronizing ring, the synchronizing ring being normally connected to the corresponding flange to be adapted to rotate synchronously with the corresponding flange, and the synchronizing ring being slidable relative to the corresponding flange; and a driving component, the driving component selectively pushing the synchronizing ring to slide from an unlocked position to a locked position in an axial direction of the corresponding flange, wherein when the synchronizing ring is in the locked position, the two synchronizing rings are connected to be adapted to rotate the other flange synchronously with the flange corresponding to the synchronizing ring. The locking device according to embodiments of the present invention can realize the two-way locking function, and is simple in structure.