Abstract:
The disclosed technology relates to the use of toxicologically acceptable hydrocarbyl- (e.g. alkyl-) phenol detergents and their salts in automotive lubricating oils, such as, for example, automatic or manual transmissions.
Abstract:
The invention relates to compounds with the formula (II), where R is a C 1 - to C 30 -alkyl group, a C 2 - to C 30 -alkenyl group, a C 6 - to C 18 -aryl group, or a C 7 - to C 30 -alkylaryl group, AO is a C 2 - C 4 -alkoxy group, x is a number from 1 to 50, m is a number between 4 and 12, and to the use thereof in quantities of 0.0001 to 5% by weight relative to the oil content of the emulsion to be demulsified, for splitting water in oil emulsions.
Abstract:
A low phosphorus passenger car motor oil containing an oil of lubricating viscosity as the major component and a tri-metal detergent mixture as a minor component, wherein the tri-metal detergent mixture comprises at least one calcium overbased metal detergent, at least one magnesium overbased metal detergent and at least one sodium overbased metal detergent, wherein the tri-metal detergent mixture is present in the oil composition in an amount such that the total TBN contributed to the oil composition by the tri-metal detergent mixture is from about 2 to about 12, and wherein the calcium overbased detergent contributes from about 8 to about 42% of the total TBN contributed by the tri-metal detergent mixture, the magnesium overbased detergent contributes from about 29 to about 60% of the total TBN contributed by the tri-metal detergent mixture, and the sodium overbased detergent contributes from about 15 to about 64% of the total TBN contributed by the tri-metal detergent mixture.
Abstract:
This invention relates to a lubricating composition comprising a major amount of an oil of lubricating viscosity with an iodine number less than about 9, (A) one or more antioxidant, and (B) from about 0.01% to about 3% by weight of at least one dispersant or detergent, wherein the total amount of antioxidant is at least about 2% by weight. The additives are useful act controlling oxidation of lubricants. Further, these lubricants have reduced viscosity increase caused by oxidation, while maintaining favorable carbon/varnish ratings.
Abstract:
A biodegradable lubricant which is prepared from: about 60-99% by weight of at least one biodegradable synthetic ester base stock which comprises the reaction product of: a branched or linear alcohol having the general formula R(OH)n, wherein R is an aliphatic or cyclo-aliphatic group having from about 2 to 20 carbon atoms and n is at least 2; and mixed acids comprising about 30 to 80 molar % of a linear acid having a carbon number in the range between about C5 to C12, and about 20 to 70 molar % of at least one branched acid having a carbon number in the range between about C5 to C10 and wherein no more than 10% of the branched acids used to form the biodegradable synthetic ester base stock contains a quaternary carbon; wherein the ester base stock exhibits the following properties: at least 60% biodegradation in 28 days as measured by the Modified Sturm test; a pour point of less than -25 DEG C.; a viscosity of less than 7500 cps at -25 DEG C.; and oxidative stability of up to 45 minutes as measured by HPDSC.
Abstract:
A biodegradable lubricant which is prepared from: about 60-99% by weight of at least one biodegradable synthetic ester base stock which comprises the reaction product of: a branched or linear alcohol having the general formula R(OH)n, wherein R is an aliphatic or cyclo-aliphatic group having from about 2 to 20 carbon atoms and n is at least 2; and mixed acids comprising about 30 to 80 molar % of a linear acid having a carbon number in the range between about C5 to C12, and about 20 to 70 molar % of at least one branched acid having a carbon number in the range between about C5 to C10 and wherein no more than 10% of the branched acids used to form the biodegradable synthetic ester base stock contains a quaternary carbon; wherein the ester base stock exhibits the following properties: at least 60% biodegradation in 28 days as measured by the Modified Sturm test; a pour point of less than -25 DEG C.; a viscosity of less than 7500 cps at -25 DEG C.; and oxidative stability of up to 45 minutes as measured by HPDSC.
Abstract:
A lubricating oil composition which exhibits improved fuel economy and fuel economy retention which contains the combination of an overbased oil soluble calcium detergent additive and an oil soluble trinuclear friction modifying molybdenum compound, the two components functioning to provide an improvement in the friction reducing properties of the composition.
Abstract:
The present invention is a lubricating oil, especially a lubricating oil for internal combustion engines, which has friction-reducing properties even under sliding conditions varying substantially in internal combustion engines and the like and which can retain friction-reducing properties over an extend even in the presence of nitrogen oxide gas. The lubricating oil composition contains a lubricating base oil, and an organomolybdenum compound, an organomono-sulfide compound, and an organopolysulfide compound.
Abstract:
A two-cycle oil is disclosed consisting of a polybutene polymer, solvent and mineral oil which passes the JASO engine test for gasoline fueled two-cycle engines.