摘要:
An electro-resistance element that has a different configuration from conventional elements and is excellent in both affinity with semiconductor manufacturing processes and resistance change characteristics is provided. An electro-resistance element has two or more states in which electric resistance values between a pair of electrodes and is switchable from one of the two or more states into another by applying a predetermined voltage or current between the electrodes. The electro-resistance element includes a substrate and a multilayer structure disposed on the substrate, the multilayer structure includes an upper electrode, a lower electrode and an electro-resistance layer disposed between the electrodes, wherein the electro-resistance layer includes Fe2O3, and Fe3O4 contained in an amount of 0% to 20% of Fe2O3 in percent by weight, the lower electrode is made of an iron oxide having a different composition from the electro-resistance layer and containing Fe3O4, and the electro-resistance layer and the lower electrode make contact with each other.
摘要翻译:提供了具有与常规元件不同的构造并且与半导体制造工艺和电阻变化特性的亲和性优异的电阻元件。 电阻元件具有两个或更多个状态,其中一对电极之间的电阻值可以通过在电极之间施加预定的电压或电流而从两个或更多个状态之一切换到另一个状态。 电阻元件包括基板和设置在基板上的多层结构,多层结构包括上电极,下电极和设置在电极之间的电阻层,其中电阻层包括Fe 2 O 3和Fe 3 O 4 含有0重量%至20重量%的Fe 2 O 3的量,下电极由具有与电阻层不同的组成并含有Fe 3 O 4的氧化铁制成,并且电阻层和下电极 互相接触。
摘要:
A thermoelectric conversion device of the present invention includes a first electrode, a second electrode, and a layered oxide arranged between the first electrode and the second electrode. The first electrode, the layered oxide, and the second electrode are arranged in this order so that a multilayer is formed. The layered oxide is formed of electric conductive layers and electric insulating layers being alternately arranged. The C axis of the layered oxide is perpendicular to the interface between the first electrode and the layered oxide. The area of the second electrode is smaller than that of the first electrode.
摘要:
An electro-resistance element that has a different configuration from conventional elements and is excellent in both affinity with semiconductor manufacturing processes and resistance change characteristics is provided. An electro-resistance element has two or more states in which electric resistance values between a pair of electrodes and is switchable from one of the two or more states into another by applying a predetermined voltage or current between the electrodes. The electro-resistance element includes a substrate and a multilayer structure disposed on the substrate, the multilayer structure includes an upper electrode, a lower electrode and an electro-resistance layer disposed between the electrodes, wherein the electro-resistance layer includes Fe2O3, and Fe3O4 contained in an amount of 0% to 20% of Fe2O3 in percent by weight, the lower electrode is made of an iron oxide having a different composition from the electro-resistance layer and containing Fe3O4, and the electro-resistance layer and the lower electrode make contact with each other.
摘要翻译:提供了具有与常规元件不同的构造并且与半导体制造工艺和电阻变化特性的亲和性优异的电阻元件。 电阻元件具有两个或更多个状态,其中一对电极之间的电阻值可以通过在电极之间施加预定的电压或电流而从两个或更多个状态之一切换到另一个状态。 电阻元件包括基板和布置在基板上的多层结构,该多层结构包括上电极,下电极和设置在电极之间的电阻层,其中电阻层包括Fe 2 <3 O 3,Fe 3 O 4含有0〜20%的Fe 2 O 3 下部电极由与电阻层不同的组成的氧化铁制成,并含有Fe 3 O 3, SUB> 4 <! - SIPO - >电极层和下电极彼此接触。
摘要:
A thermoelectric transducing material according to this invention includes a layered cobaltite based substance represented by the chemical formula AxCoO2, wherein A consists of an element or element group selected from alkali metal elements and alkali earth group elements and is compositionally modulated in a thickness-wise direction of layers in a structure of the layered cobaltite based substance.
摘要:
An electro-resistance element that has a different configuration from conventional elements and shows outstanding resistance change characteristics is provided. An electro-resistance element has two or more states in which electric resistance values are different, and is switchable from one of the two or more states into another by application of a predetermined voltage or current. The electro-resistance element includes: a multilayer structure including an upper electrode, a lower electrode, and an electro-resistance layer sandwiched by the electrodes, the multilayer structure disposed on a substrate; wherein the electro-resistance layer has a spinel structure, and a surface of the lower electrode that faces the electro-resistance layer is oxidized. The electro-resistance element can be manufactured by a manufacturing process at 400° C. or lower.
摘要:
The present invention provides a method for producing a magnetoresistive element including a tunnel insulating layer, and a first magnetic layer and a second magnetic layer that are laminated so as to sandwich the tunnel insulating layer, wherein a resistance value varies depending on a relative angle between magnetization directions of the first magnetic layer and the second magnetic layer. The method includes the steps of: (i) laminating a first magnetic layer, a third magnetic layer and an Al layer successively on a substrate; (ii) forming a tunnel insulating layer containing at least one compound selected from the group consisting of an oxide, nitride and oxynitride of Al by performing at least one reaction selected from the group consisting of oxidation, nitriding and oxynitriding of the Al layer; and (iii) forming a laminate including the first magnetic layer, the tunnel insulating layer and a second magnetic layer by laminating the second magnetic layer in such a manner that the tunnel insulating layer is sandwiched by the first magnetic layer and the second magnetic layer. The third magnetic layer has at least one crystal structure selected from the group consisting of a face-centered cubic crystal structure and a face-centered tetragonal crystal structure and is (111) oriented parallel to a film plane of the third magnetic layer. According to this production method, it is possible to produce a magnetoresistive element with excellent properties and thermal stability.
摘要:
A magnetoresistve memory device includes a magnetoresistive element and a wiring for applying a magnetic field to the magnetoresistive element. The wiring includes two or more conductive wires that extend in the same direction. A plurality of conductive wires is used to apply a magnetic field to a single magnetoresistive element, thereby achieving high-speed response and suppressing crosstalk.
摘要:
A magnetic control device including an antiferromagnetic layer, a magnetic layer placed in contact with one side of the antiferromagnetic layer, and an electrode placed in contact with another side of the antiferromagnetic layer, wherein the direction of the magnetization of the magnetic layer is controlled by voltage applied between the magnetic layer and the electrode. In particular, when an additional magnetic layer is further laminated on the magnetic layer placed in contact with the antiferromagnetic layer via a non-magnetic layer, the direction of the magnetization of the controlled magnetic layer can be detected as a change in the electric resistance. Since such a magnetic control device, in principle, responds to the electric field or magnetic field, it forms a magnetic component capable of detecting an electric signal or a magnetic signal. In this case, the direction of the magnetization basically is maintained until the next signal is detected, so that such a device also can form an apparatus. Thus, a magnetic control device capable of controlling the magnetization with voltage and magnetic component and a memory apparatus using the same are provided.
摘要:
This invention provides a superconducting device with good characteristics that can be reproduced at an arbitrary place on a substrate and a method of manufacturing the same. A convex region (a processed, linearly-shaped platinum thin film) of oriented metal is provided on a substrate as a gate electrode. Then, an oxide insulating film (SrTiO.sub.3 thin film) is deposited on the convex region, and further a YBa.sub.2 Cu.sub.3 O.sub.7 oxide superconducting thin film is deposited on the oxide insulating film. Accordingly, a grain boundary part is formed on the convex region. A drain electrode and a source electrode are formed facing each other with the grain boundary part in between.
摘要:
A sound wave generator that exhibits more excellent output properties than conventional ones, based on the combination of a base layer and a heat-insulating layer that cannot be expected from conventional techniques is provided. The sound wave generator includes a base layer; a heat-insulating layer disposed on the base layer; and a heat pulse source that applies heat pulses to the heat-insulating layer. The base layer is composed of graphite or sapphire, and the heat-insulating layer is composed of crystalline fine particles containing silicon or germanium. The heat pulse source, for example, is a heat pulse-generating layer that is disposed on the surface of the heat-insulating layer opposite to the base layer and applies heat pulses to the heat-insulating layer.