Abstract:
In a metal-based print board formed with radiators, a metal foil is affixed to a front surface of a metal plate having good thermal conductivity, an insulating adhesive layer interposed therebetween. A radiator is integrally provided on a reverse surface of the metal plate, the radiator having a plurality of thin radiating fins formed upright in a tabular shape due to having been dug out by an excavating tool. The radiating fins give the radiator a large area over which heat can be released. The thickness of a first metal plate portion formed between adjacent radiating fins is less than the original thickness of the metal plate. Heat generated by an electronic component or another component provided on a side of the front surface of the metal plate is rapidly transmitted from the reduced-thickness first metal plate portion of the metal plate to each of the radiating fins of the radiator on the reverse surface side, and efficiently released from each of the radiating fins, which have a large area over which heat is radiated.
Abstract:
A method for manufacturing a plate-type heat exchanger in which a heat medium is sealed in a hollow part of an airtight structure formed in the interior of a plate-like container, and the heat medium is moved by capillary force from a condensing part to an evaporating part in the hollow part along heat-medium-guiding grooves formed in the container's inside surface portions that face the hollow part; wherein a plastic workable metal plate of specific thermal conductivity is prepared; a carving tool is used to repeatedly carve out a surface portion of the metal plate at specific intervals along the surface portion, forming a plurality of plate-like fins; and a plurality of grooves formed between these fins is used as heat-medium-guiding grooves. A plate-type heat exchanger is obtained which comprises extremely small heat-medium-guiding grooves that have the necessary capillary force to move the heat medium from the condensing part to the evaporating part without affecting the set alignment or other such characteristics.
Abstract:
A heat generating member cooling structure in which a coolant space is formed between a heat releasing surface that is thermally connected to a heat generating member and an opposing surface that is positioned opposite the heat releasing surface, includes a plurality of heat releasing fins that are provided within the coolant space so as to be parallel to one another and stand from the heat releasing surface toward the opposing surface, and an inter-fin passage, through which a coolant flows, formed between every two of the plurality of heat releasing fins that are positioned adjacent to each other.
Abstract:
In a method of manufacturing a radiator, the blade of a carving tool is applied at a specific angle to the surface of a metal plate with a high coefficient of thermal conductivity, the carving tool is advanced while the angle is maintained, and the surface of the metal plate is carved out to form plate-shaped heat-radiating fins vertically upward. A radiator is manufactured in which a plurality of heat-radiating fins are integrally formed vertically upward at a specific pitch from a single metal plate by repeating a step in which the carving tool is retracted at a specific pitch, the metal plate is carved out, and a heat-radiating fin is formed. A radiator that has high radiation efficiency and is highly safe during handling can be manufactured at low cost.
Abstract:
A method for forming a cavity structure provided with a thin bottom plate is comprises the following steps. The first step is to deform plastically a part of a metal plate so as to form a cavity on one surface of a metal plate wherein the cavity has an oddly bottom surface provided with subsections being different from each other in depth. Simultaneously a protrusion is formed on the other surface of the metal plate by shifting an amount of metal corresponding to the cavity into the protrusion wherein the protrusion has substantially similar figure to the cavity. Then a coupling section, which keeps the protrusion integral with the metal plate, is formed so as to make the protrusion smaller than the cavity. And the protrusion is removed from the metal plate so as to make the other surface of the metal plate flat and to form the bottom plate of the cavity thin while remaining the coupling section.
Abstract:
A method of forming a hollow pole projecting from a metal plate by plastic deformation and comprising the steps of: (a) pressing the plate from one surface of the plate using a press tool so as to form a hole on the one surface and a projection on the other surface thereof; (b) moving metal of the plate around said projection towards interior of said hole so as to gather the metal into a periphery of an opening of said hole using a tapered tool; (c) pressing said periphery of said hole using a flat press tool which is greater than said projection in an external diameter so as to move the metal gathered by said tapered tool further towards the interior of said hole and to increase a height of said projection; and (d) inserting said press tool into said hole while pressing the interior of said hole so as to increase further the height of said projection and to form the hollow pole. The projection can therefore be made substantially higher with respect to the thickness of the plate or the thickness of the hollow pole can be made thicker. Further, a heatsink utilizing the hollow poles as superior heat dissipating fins can be manufactured easily and cheaply.
Abstract:
An object of the present invention is to provide a method for forming a recess portion having an predetermined shape on one side of a metal plate without giving the metal plate any remarkable stress while forming the other side flat, which is suitable for a package for electronic parts such as an integrated circuit, etc. The method according to the present invention is characterized in that a recess portion having an predetermined shape is formed by plastically deforming a metal plate having a predetermined thickness by means of a press, etc. so as to form the recess portion having a depth smaller than the thickness on one side thereof and to form at the same time a protruding portion protruding on the other side of the metal plate. In the steps of plastically deforming the metal plate, metal corresponding to the recess portion is displaced to the protruding portion. Then, the protruding portion on the other side is removed by cutting processing to form the recess portion only on the one side of the metal plate and to form the other side flat.
Abstract:
In a metal-based print board formed with radiators, a metal foil is affixed to a front surface of a metal plate having good thermal conductivity, an insulating adhesive layer interposed therebetween. A radiator is integrally provided on a reverse surface of the metal plate, the radiator having a plurality of thin radiating fins formed upright in a tabular shape due to having been dug out by an excavating tool. The radiating fins give the radiator a large area over which heat can be released. The thickness of a first metal plate portion formed between adjacent radiating fins is less than the original thickness of the metal plate. Heat generated by an electronic component or another component provided on a side of the front surface of the metal plate is rapidly transmitted from the reduced-thickness first metal plate portion of the metal plate to each of the radiating fins of the radiator on the reverse surface side, and efficiently released from each of the radiating fins, which have a large area over which heat is radiated.
Abstract:
In a method of forming a protruded shaft on a metal base for an electronic memory device, the metal base is pressed down with a pressing tool from upper face side of the metal base placed on a die. The die is provided with a hole having a predetermined inner diameter and the wall material of the metal base is moved into the hole of the die to form a protruded shaft having a hollow part inside and the tip end closed.
Abstract:
A shearing method for a thin plate including forming a protruded product part having a first sagging part when the thin plate with a thickness of not more than approximately 0.3 mm is performed with a half die cutting by pressing the half die cutting punch slightly larger than the half die cutting hole to form a shallow recessed part, fixing the product part by a fixing member, forming a second sagging part at an edge portion of the thin plate by pressurizing a scrap part by moving a pressure punch which is provided with a gap between the fixing member and the pressure punch and by being bent between the scrap part and the product part, and then separating the scrap part from the product part.