Abstract:
Provided are techniques for using containers to store objects. One data store from a set of data stores is assigned as a primary data store, wherein the remaining data stores comprise secondary data stores. A container for a group is created on the primary data store. A unique identifier for the container is generated on the primary data store. Metadata for the container is stored on the primary data store. Zero or more objects are stored in the container on the primary data store. For each of the secondary data stores that have objects belonging to the group, a container is created in that secondary data store having the unique identifier, wherein the container spans the primary data store and the secondary data stores, and wherein the objects in the container do not span the primary data store and the secondary data stores.
Abstract:
Exemplary embodiments provide materials and methods for an electrostatic charging member including a conductive substrate; a base layer disposed over the conductive substrate, the base layer comprising an elastomeric material and a semiconductive material; and a protective outer layer disposed over the base layer, the protective outer layer comprising a polymeric resin and a plurality of conductive particles, wherein the outer protective layer has a surface resistivity ranging from about 105 O/sq to about 1013 O/sq.
Abstract:
The formation of through silicon vias (TSVs) in an integrated circuit (IC) die or wafer is described in which the TSV is formed in the integration process prior to contact or metallization processing. Contacts and bonding pads may then be fabricated after the TSVs are already in place, which allows the TSV to be more dense and allows more freedom in the overall TSV design. By providing a denser connection between TSVs and bonding pads, individual wafers and dies may be bonded directly at the bonding pads. The conductive bonding material, thus, maintains an electrical connection to the TSVs and other IC components through the bonding pads.
Abstract:
A method of handling a thin wafer includes forming a support structure at the edge of a thinned wafer that is encapsulated by a protection layer. The support structure can be an adhesive layer enclosing the protection layer, a dielectric-filled trench embedded in the thinned wafer and surrounding the protection layer, or a housing affixing the edge of the thinned wafer.
Abstract:
The present teachings provide a fuser member. The fuser member includes a substrate layer comprising a polyamideimide/polybenzimidazole polymer blend. A method of manufacturing the fuser member is described.
Abstract:
An electrophotographic imaging device includes a charging device, a cleaning device, and a fuser member that each include hydrophobic carbon nanotubes. The use of hydrophobic carbon nanotubes can increases the charging device's, the cleaning device's, and the fuser member's durability, conductivity, and contaminants deposition.
Abstract:
An intermediate transfer member including a first supporting substrate layer, and a second layer of a silane-containing polyamideimide, and a filler component.
Abstract:
The presently disclosed embodiments relate generally to layers that are useful in imaging apparatus members and components, for use in electrophotographic, including digital printing, apparatuses. More particularly, the embodiments pertain to an improved electrophotographic imaging member comprising a charge transport layer comprising a novel combination of a tetraaryl polycarbonate copolymer binder and perfluorinated fillers. The present charge transport layer provides reduced wear rate and long service life.
Abstract:
A stacked structure includes a first die bonded over a second die. The first die has a first die area defined over a first surface. At least one first protective structure is formed over the first surface, around the first die area. At least one side of the first protective structure has at least one first extrusion part extending across a first scribe line around the protective structure. The second die has a second die area defined over a second surface. At least one second protective structure is formed over the second surface, around the second die area. At least one side of the second protective structure has at least one second extrusion part extending across a second scribe line around the protective structure, wherein the first extrusion part is connected with the second extrusion part.