摘要:
A semiconductor memory device includes a memory cell array, a repair control circuit and a refresh control circuit. The memory cell array includes a plurality of memory cells and a plurality of redundancy memory cells. The repair control circuit receives a repair command and performs a repair operation on a first defective memory cell among the plurality of memory cells during a repair mode. The semiconductor memory device may operate in a repair mode in response to the repair command. The refresh control circuit performs a refresh operation on non-defective ones of the plurality of memory cells during the repair mode.
摘要:
A mobile system may comprise a three-dimensional (3D) image sensor on a first surface of the mobile system configured to perform a first sensing to detect proximity of a subject and a second sensing to recognize a gesture of the subject by acquiring distance information for the subject; and/or a display device on the first surface of the mobile system to display results of the first sensing and the second sensing. A mobile system may comprise a light source unit; a plurality of depth pixels; and/or a plurality of color pixels. The light source unit, the plurality of depth pixels, or the plurality of color pixels may be activated based on an operation mode of the mobile system.
摘要:
A semiconductor memory device having a 3D stacked structure includes: a first semiconductor area with a stacked structure of a first layer having first data and a second layer having second data; a first line for delivering an access signal for accessing the first semiconductor area; and a second line for outputting the first and/or second data from the first semiconductor area, wherein access timings of accessing the first and second layers are controlled so that a first time delay from the delivery of the access signal to the first layer to the output of the first data is substantially identical to a second time delay from the delivery of the access signal to the second layer to the output of the second data, thereby compensating for skew according to an inter-layer timing delay and thus performing a normal operation. Accordingly, the advantage of high-integration according to a stacked structure can be maximized by satisfying data input/output within a predetermined standard.
摘要:
A semiconductor memory device having a 3D stacked structure includes: a first semiconductor area with a stacked structure of a first layer having first data and a second layer having second data; a first line for delivering an access signal for accessing the first semiconductor area; and a second line for outputting the first and/or second data from the first semiconductor area, wherein access timings of accessing the first and second layers are controlled so that a first time delay from the delivery of the access signal to the first layer to the output of the first data is substantially identical to a second time delay from the delivery of the access signal to the second layer to the output of the second data, thereby compensating for skew according to an inter-layer timing delay and thus performing a normal operation. Accordingly, the advantage of high-integration according to a stacked structure can be maximized by satisfying data input/output within a predetermined standard.
摘要:
A memory device includes a decoder that sets an operational control signal and a column select line signal at a first logical level simultaneously. In addition, a local sense amplifier has at least one switching device that is turned on by the operational control signal that is at the first logical level to couple at least one local I/O line to at least one global I/O line. Furthermore, signal lines, that are disposed to be parallel, transmit the operational control signal and the column select line signal from the decoder.
摘要:
In one embodiment, a latency circuit generates the latency signal based on CAS latency information and read information. For example, the latency circuit may include a clock signal generating circuit generating a plurality of transfer signals and generating a plurality of sampling clock signals based on and corresponding to the plurality of transfer signals such that a timing relationship is created between the transfer signals and the sampling clock signals. The latency circuit may further include a latency signal generator selectively storing the read information based on the sampling clock signals, and selectively outputting the stored read information as the latency signal based on the transfer signals. The latency signal generator may also delay the read information such that the delayed, read information is stored based on the sampling clock signals.
摘要:
Methods of providing a delay for access to a memory device can include adjusting a delay for access to data during memory operations based on at least one parameter associated with a reduction in voltage levels provided to the memory. Related circuits are also disclosed.
摘要:
A semiconductor memory device achieves high speed operation while operating at a low power supply voltage by boosting the voltage level at the plate node of a memory cell during an access operation. The memory device includes a plate voltage generator which generates a variable voltage level. The plate voltage generator includes a pair of switches for coupling the plate node to either a conventional (1/2)VCC voltage generator or a power supply node in response to a control signal. The plate voltage generator also includes a pulse generator that generates a pulse signal for controlling the switches in response to the control signal. During a precharge period, the bitline pair is charged to VCC. The plate voltage generator charges the plate node to (1/2)VCC during the precharge state and then to VCC during an access operation. This boosts the voltage level at the storage node of the memory cell, thereby decreasing the time required to amplify the signals on the bitlines.
摘要:
Integrated circuit memory devices include at least first and second memory cells electrically coupled to respective first and second sense bit signal lines of a sense amplifier. The sense amplifier comprises a circuit for amplifying a difference in potential between the first and second sense bit signal lines by driving these lines to respective first and second different potentials. A driving circuit is also provided for simultaneously driving the first and second sense bit signal lines towards the first potential in response to application of a boost control signal. This driving circuit preferably comprises a first capacitor electrically connected in series between the boost control input and the first sense bit signal line and a second capacitor electrically connected in series between the boost control input and the second sense bit signal line. The boost control signal is established at the first potential to drive both the sense bit signal lines from different intermediate potentials (e.g., 1/2VCC+, 1/2VCC) towards the first potential, prior to amplification of the difference in potential between the first and second sense bit signal lines by the sense amplifier. The present invention enables the sense amplifier to operate in an environment where the power supply voltage (e.g., VCC) is reduced and the different intermediate potentials (e.g., 1/2VCC+, 1/2VCC) to be amplified are initially established at potentials below the normal sensitivity of the sense amplifier.
摘要翻译:集成电路存储器件包括电耦合到读出放大器的相应第一和第二感测位信号线的至少第一和第二存储器单元。 感测放大器包括用于通过将这些线驱动到相应的第一和第二不同电位来放大第一和第二感测位信号线之间的电位差的电路。 还提供驱动电路,用于响应于施加升压控制信号,同时将第一和第二感测位信号线驱动朝向第一电位。 该驱动电路优选地包括串联电连接在升压控制输入和第一感测位信号线之间的第一电容器和串联电连接在升压控制输入和第二感测位信号线之间的第二电容器。 升压控制信号被建立在第一电位,以驱动来自不同中间电位(例如,+ E,fra 1/2 + EE VCC +,+ E,fra 1/2 + EE VCC)的感测位信号线朝着第一 在由感测放大器放大第一和第二感测位信号线之间的电位差之前的电位。 本发明使得读出放大器能够在电源电压(例如,VCC)减小的环境中工作,并且不同的中间电位(例如,+ E,fra 1/2 + EE VCC +,+ E, + EE VCC)最初建立在低于读出放大器正常灵敏度的电位。
摘要:
Example embodiments relate to a semiconductor memory device and a system in which a plurality of semiconductor layers are stacked on each other. A 3-dimensional (3D) semiconductor memory device may include a plurality of semiconductor layers that are stacked on each other. The plurality of semiconductor layers may have the same memory cell structure. The 3D semiconductor memory device may include a first memory region including at least one semiconductor layer for storing system data and a second memory region including at least one semiconductor layer for storing data aside from the system data. The system data may include at least one piece of data selected from the group consisting of a booting code, a system code, and application software.