Abstract:
Techniques are described that enhance power from an extreme ultraviolet light source with feedback from a target material that has been modified prior to entering a target location into a spatially-extended target distribution or expanded target. The feedback from the spatially-extended target distribution provides a nonresonant optical cavity because the geometry of the path over which feedback occurs, such as the round-trip length and direction, can change in time, or the shape of the spatially-extended target distribution may not provide a smooth enough reflectance. However, it may be possible that the feedback from the spatially-extended target distribution provides a resonant and coherent optical cavity if the geometric and physical constraints noted above are overcome. In any case, the feedback can be generated using spontaneously emitted light that is produced from a non-oscillator gain medium.
Abstract:
A device is disclosed herein which may comprise a droplet generator producing droplets of target material; a sensor providing an intercept time signal when a droplet reaches a preselected location; a delay circuit coupled with said sensor, the delay circuit generating a trigger signal delayed from the intercept time signal; a laser source responsive to a trigger signal to produce a laser pulse; and a system controlling said delay circuit to provide a trigger signal delayed from the intercept time by a first delay time to generate a light pulse that is focused on a droplet and a trigger signal delayed from the intercept time by a second delay time to generate a light pulse which is not focused on a droplet.
Abstract:
A filter is used in a target material supply apparatus and includes a sheet having a first flat surface and a second opposing flat surface, and a plurality of through holes. The first flat surface is in fluid communication with a reservoir that holds a target mixture that includes a target material and non-target particles. The through holes extend from the second flat surface and are fluidly coupled at the second flat surface to an orifice of a nozzle. The sheet has a surface area that is exposed to the target mixture, the exposed surface area being at least a factor of one hundred less than an exposed surface area of a sintered filter having an equivalent transverse extent to that of the sheet.
Abstract:
Techniques for forming a target and for producing extreme ultraviolet light include releasing an initial target material toward a target location, the target material including a material that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first amplified light beam toward the initial target material, the first amplified light beam having an energy sufficient to form a collection of pieces of target material from the initial target material, each of the pieces being smaller than the initial target material and being spatially distributed throughout a hemisphere shaped volume; and directing a second amplified light beam toward the collection of pieces to convert the pieces of target material to plasma that emits EUV light.
Abstract:
Techniques for forming a target and for producing extreme ultraviolet light include releasing an initial target material toward a target location, the target material including a material that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first amplified light beam toward the initial target material, the first amplified light beam having an energy sufficient to form a collection of pieces of target material from the initial target material, each of the pieces being smaller than the initial target material and being spatially distributed throughout a hemisphere shaped volume; and directing a second amplified light beam toward the collection of pieces to convert the pieces of target material to plasma that emits EUV light.
Abstract:
Disclosed is an EUV system in which a source control loop is established to maintain and optimize debris flux while not unduly affecting optimum EUV generation conditions. One or more temperature sensors, e.g., thermocouples may be installed in the vessel to measure respective local gas temperatures. The respective local temperature as measured by the one or more thermocouples can be used as one or more inputs to the source control loop. The source control loop may then adjust the laser targeting to permit optimization of debris generation and deposition while not affecting EUV production, thus extending the lifetime of the source and its collector.
Abstract:
Disclosed is an EUV system in which a source control loop is established to maintain and optimize debris flux while not unduly affecting optimum EUV generation conditions. One or more temperature sensors, e.g., thermocouples may be installed in the vessel to measure respective local gas temperatures. The respective local temperature as measured by the one or more thermocouples can be used as one or more inputs to the source control loop. The source control loop may then adjust the laser targeting to permit optimization of debris generation and deposition while not affecting EUV production, thus extending the lifetime of the source and its collector.
Abstract:
A system for an extreme ultraviolet light source includes one or more optical elements positioned to receive a reflected amplified light beam and to direct the reflected amplified light beam into first, second, and third channels, the reflected amplified light beam including a reflection of at least a portion of an irradiating amplified light beam that interacts with a target material; a first sensor that senses light from the first channel; a second sensor that senses light from the second channel and the third channel, the second sensor having a lower acquisition rate than the first sensor; and an electronic processor coupled to a computer-readable storage medium, the medium storing instructions that, when executed, cause the processor to: receive data from the first sensor and the second sensor, and determine, based on the received data, a location of the irradiating amplified light beam relative to the target material in more than one dimension.
Abstract:
Techniques for forming a target and for producing extreme ultraviolet light include releasing an initial target material toward a target location, the target material including a material that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first amplified light beam toward the initial target material, the first amplified light beam having an energy sufficient to form a collection of pieces of target material from the initial target material, each of the pieces being smaller than the initial target material and being spatially distributed throughout a hemisphere shaped volume; and directing a second amplified light beam toward the collection of pieces to convert the pieces of target material to plasma that emits EUV light.
Abstract:
A method and apparatus for control of a dose of extreme ultraviolet (EUV) radiation generated by a laser produced plasma (LPP) EUV light source. Each laser pulse is modulated to be of a width that is determined to be sufficient to allow for extraction of a suitable uniform amount of energy in the laser source gain medium; in some embodiments the suitable uniform amount of energy to be extracted may be selected to avoid self-lasing. The EUV energy created by each pulse is measured and total EUV energy created by the fired pulses determined, and a desired energy for the next pulse is determined based upon whether the total EUV energy is greater or less than a desired average EUV energy times the number of pulses. The energy of the next pulse is modulated, either by modulating its magnitude or by modulating the amplification of the pulse by one or more amplifiers, but without decreasing the determined width of the laser pulse.