Abstract:
The present invention relates to hydrogels comprising a first peptide with a covalently linked bioactive agent and optionally a second peptide. The present invention further relates to uses of the hydrogel for delivery of the bioactive agent or as an implant. The present invention further relates to drug delivery devices, implant, pharmaceutical or cosmetic compositions comprising the hydrogel. The present invention further relates to methods of local treatment of diseases and to methods for preparing the first peptide and the hydrogels.
Abstract:
The present invention relates to hydrogels comprising a first peptide with a covalently linked bioactive agent and optionally a second peptide. The present invention further relates to uses of the hydrogel for delivery of the bioactive agent or as an implant. The present invention further relates to drug delivery devices, implant, pharmaceutical or cosmetic compositions comprising the hydrogel. The present invention further relates to methods of local treatment of diseases and to methods for preparing the first peptide and the hydrogels.
Abstract:
The present invention provides an amphiphilic linear peptide and/or peptoid as well as a hy-drogel that includes the amphiphilic linear peptide/peptoid. The amphiphilic linear pep-tide/peptoid is capable of forming, a hydrogel. These peptides/peptoids include short amphi-philic sequences with a hydrophobic portion of aliphatic amino acids and at least one acidic, neutral, or basic polar amino acid. The amphiphilic linear peptide/peptoid is build up of non repetitive aliphatic amino acids, which may be in the L- or D-form. A plurality of such pep-tides/peptoids assembles to supramolecular helical fibers and forms peptide hydrogels after assembly: A corresponding hydrogel is formed in aqueous solutions at physiological pH and is thus useful for inter alia cell culture, tissue engineering, and drug release. Such hydrogels which are rigid, biocompatible and entrapping up to 99.9% of water are also well suited for applications utilizing electronic devices.
Abstract:
The present invention relates to organogels and emulsions based on ultrasmall self-assembling peptides. It further relates to methods for producing such organogels and emulsions as well as to the use of the organogels and emulsions in biological and non-biological applications.
Abstract:
The present invention provides an amphiphilic linear peptide and/or peptoid as well as a hy-drogel that includes the amphiphilic linear peptide/peptoid. The amphiphilic linear pep-tide/peptoid is capable of forming, a hydrogel. These peptides/peptoids include short amphi-philic sequences with a hydrophobic portion of aliphatic amino acids and at least one acidic, neutral, or basic polar amino acid. The amphiphilic linear peptide/peptoid is build up of non repetitive aliphatic amino acids, which may be in the L- or D-form. A plurality of such pep-tides/peptoids assembles to supramolecular helical fibers and forms peptide hydrogels after assembly: A corresponding hydrogel is formed in aqueous solutions at physiological pH and is thus useful for inter alia cell culture, tissue engineering, and drug release. Such hydrogels which are rigid, biocompatible and entrapping up to 99.9% of water are also well suited for applications utilizing electronic devices.
Abstract:
The present invention relates to organogels and emulsions based on ultrasmall self-assembling peptides. It further relates to methods for producing such organogels and emulsions as well as to the use of the organogels and emulsions in biological and non-biological applications.