Abstract:
A light-acoustic system and method for detecting an anomaly in a structure are provided. The system includes a light source configured to emit an excitation light and at least one excitation element attached to a surface of a structure. The at least one excitation element includes a photostrictive material and is configured to receive the excitation light for generating an oscillating strain. The oscillating strain generates an acoustic wave in the structure. The system also includes a detector configured to detect the acoustic wave.
Abstract:
Devices and method for synchronized light and sound emission are disclosed. The device comprises: a first electrode layer; a second electrode layer; and a composite material layer disposed between the first electrode layer and the second electrode layer, the composite material layer having an electromechanical active matrix and an electroluminescent component; and wherein the electroluminescent component comprises a plurality of particle sets dispersed in the electromechanical active matrix, each particle set being continuous and having two ends each in contact with a respective one of the first and second electrode layers.
Abstract:
A fluid jet dispenser using at least two multilayer piezoelectric actuators is provided. The fluid jet dispenser includes a dispensing head and an electrical driver. The dispensing head includes at least two d31-mode multilayer piezoelectric actuators, a displacement magnifying element mechanically coupled to the d31-mode multilayer piezoelectric actuators, a piston, and a nozzle. More preferably, the two d31-mode multilayer piezoelectric actuators operate in an anti-phase condition. The electrical driver is electrically coupled to the d31-mode multilayer piezoelectric actuators for displacing the actuators in directions substantially perpendicular to polarization of piezoelectric layers in the d31-mode multilayer piezoelectric actuators in response to charging and discharging of the actuators by the electrical driver, to generate a fast movement of the piston to jet a pressurized fluid out of the nozzle of the dispensing head.
Abstract:
Wireless piezoelectric accelerometers and systems are provided. A wireless piezoelectric accelerometer may comprise a piezoelectric sensing element configured to sense mechanical acceleration and produce an electrical charge signal in response of the sensed mechanical acceleration, a signal processing module (SPM) configured to convert the electrical charge signal into a voltage signal, and process and digitize the voltage signal, and a wireless module configured to modulate and transmit the digitized voltage signal as wireless signals. The piezoelectric sensing element, the SPM and the wireless module are packaged in a casing. The casing comprises a metallic shielding chamber configured to enclose the piezoelectric sensing element. The casing further comprises a non-metallic portion located in relative to the wireless module to allow transmission of the wireless signals. Corresponding wireless piezoelectric accelerometer systems are also provided.
Abstract:
The present invention discloses a method of preparing a lead-free piezoelectric thin film comprising the steps of: providing a precursor solution comprising at least one alkali metal ion, a polyamino carboxylic acid, and an amine; depositing the precursor solution on a substrate to form a film; and annealing the film. The present invention also provides a lead-free piezoelectric thin film prepared according to the method, a precursor solution for use in the method and a method of preparing the precursor solution.
Abstract:
Various embodiments may provide an electromechanical responsive film. The electromechanical responsive film may include a composition including sodium (Na), potassium (K), niobium (Nb) and oxygen (O). The composition may have a formula (NaxKy)NbO3-δ, wherein 0≤x
Abstract:
A vibration control system includes a plurality of spatially distributed transducer elements, a switching circuit, one or more vibration control circuits, and a controller circuit. The switching circuit is connected to each of the transducer elements. The one or more vibration control circuits are configured to perform vibration control, each of the one or more vibration control circuits being connected to the switching circuit. The controller circuit is configured to control the one or more vibration control circuits and the switching circuit. The switching circuit is configured to interconnect selected ones of the transducer elements based on a switching signal provided by the controller circuit, the switching signal being in response to a vibration condition, to adaptively form a group of interconnected transducer elements. The switching circuit is further configured to connect the group of interconnected transducer elements to a selected at least one of the one or more vibration control circuits for receiving a single vibration control signal or electrical impedance source corresponding to the vibration condition.
Abstract:
Systems and methods for monitoring plastic deformation of a structural material are provided. An acoustic wave actuator is configured to generate acoustic wave signals to be propagated within the structural material and is in-situ fabricated on the structural material at a first location. An alternating current (AC) electric signal source drives the acoustic wave actuator to generate the acoustic wave signals at a predetermined frequency. One or more acoustic wave sensors detect the acoustic wave signals generated by the acoustic wave actuator and propagated within the structural material. More particularly, the acoustic wave detectors are configured to detect both fundamental and second harmonic acoustic signals at the predetermined frequency. The acoustic wave sensors are in-situ fabricated on the structural material at one or more second locations.
Abstract:
According to one aspect of the invention, there is provided a photo-sensor comprising: an optically transparent substrate; an electrode pair; and a photoactive film with electrical polarization located between the optically transparent substrate and the electrode pair, wherein the optically transparent substrate is configured to transmit incident radiation received by the optically transparent substrate to the photoactive film and wherein the electrode pair is configured to receive charge carriers generated by the photoactive film in response to the transmitted incident radiation.
Abstract:
According to embodiments of the present invention, a piezoelectric actuator is provided. The piezoelectric actuator includes a shear mode piezoelectric material including a first arm and a second arm intersecting each other, the shear mode piezoelectric material having a polarization direction oriented at least substantially along a length of the first arm, wherein the shear mode piezoelectric material has a first surface and a second surface opposite to the first surface, the first surface and the second surface being adapted to undergo a shear displacement relative to each other along an axis at least substantially parallel to the polarization direction in response to an electric field applied between the first surface and the second surface in a direction at least substantially perpendicular to the polarization direction.