Abstract:
The invention relates to a process for producing at least one air gap in a microstructure, which comprises:a) the supply of a microstructure comprising at least one gap filled with a sacrificial material, this gap being limited over at least part of its surface by an impermeable membrane but which may be rendered permeable by the action of a chemical etchant, this etchant also being capable of degrading the sacrificial material;b) the contacting of the microstructure with said chemical etchant in order to make the membrane permeable and degrade the sacrificial material; andc) the removal of the chemical etchant from the microstructure; and in which the chemical etchant is a fluid containing hydrofluoric acid and/or ammonium fluoride.Applications: Microelectronics and micro-technology.
Abstract:
A process for producing at least one air gap in a microstructure, which includes the supply of a microstructure comprising at least one gap filled with a sacrificial material, this gap being limited over at least part of its surface by an impermeable membrane but which may be rendered permeable by the action of a chemical etchant, this etchant also being capable of degrading the sacrificial material and the contacting of the microstructure with said chemical etchant in order to make the membrane permeable and degrade the sacrificial material, and the removal of the chemical etchant from the microstructure and in which the chemical etchant is a fluid containing hydrofluoric acid and/or ammonium fluoride. Applications include microelectronics and micro-technology.
Abstract:
A process for fabricating a hydrogenated amorphous silicon carbide film having through-pores includes the formation on a substrate of a film consisting of an amorphous hydrogenated silicon carbide matrix in which silicon oxide nanowires are dispersed therethrough, and then the selective destruction by a chemical agent of the silicon oxide nanowires present in the film formed at step a). Applications include microelectronics and micro-technology, in all fabrication processes that involve the degradation of a sacrificial material by diffusion of a chemical agent through a film permeable to this agent for the production of air gaps, in particular the fabrication of air-gap interconnects for integrated circuits.
Abstract:
A structure, method of manufacturing a structure, and methods of using a structure including a graphene sheet is disclosed. According to one aspect, the grapheme sheet is provided, on one of the faces of the structure, with a plurality of metal pins. The metal pins being separated from one another by a dielectric medium chosen from air and dielectric materials. The method including the steps of synthesizing, by vapor phase catalytic growth, the graphene sheet on a plurality of metal pins that are disposed on a membrane made from dielectric material or integrated in the membrane. The growth being catalyzed by the metal pins. According to some aspects, the membrane is removed from the structure. The structure may be used, for example, in the fields of micro- and nanoelectronics, micro- and nanoelectronic engineering, spintronics, photovoltaics, light emitting diode display, or the like.
Abstract:
Provided a method for producing an oriented-porosity dielectric material on a substrate. The method includes depositing a composite layer on a substrate by vapor deposition comprising a material forming a matrix and a compound comprising chemical groups capable of being oriented under the effect of an electromagnetic field and/or photonic radiation; treating the composite layer to obtain the cross-linking of the material forming a matrix; and subjecting the substrate coated with the composite layer to an electromagnetic field and a photonic radiation.
Abstract:
The present invention relates to a method of production of graphene comprising the following stages respectively: a stage of deposition of a thin layer comprising amorphous carbon on a substrate; a stage of annealing of said thin layer under photonic and/or electronic irradiation, by which a layer comprising graphene is obtained.
Abstract:
Provided a method for producing an oriented-porosity dielectric material on a substrate. The method includes depositing a vapor phase on a substrate of a composite layer comprising a material forming a matrix and a compound comprising chemical groups capable of being oriented under the effect of an electromagnetic field and/or photonic radiation; treating the composite layer to obtain the cross-linking of the material forming a matrix; and subjecting the substrate coated with the composite layer to an electromagnetic field and/or a photonic radiation.
Abstract:
A structure, method of manufacturing a structure, and methods of using a structure including a graphene sheet is disclosed. According to one aspect, the grapheme sheet is provided, on one of the faces of the structure, with a plurality of metal pins. The metal pins being separated from one another by a dielectric medium chosen from air and dielectric materials. The method including the steps of synthesizing, by vapor phase catalytic growth, the graphene sheet on a plurality of metal pins that are disposed on a membrane made from dielectric material or integrated in the membrane. The growth being catalysed by the metal pins. According to some aspects, the membrane is removed from the structure. The structure may be used, for example, in the fields of micro- and nanoelectronics, micro- and nanoelectronic engineering, spintronics, photovoltaics, light emitting diode display, or the like.
Abstract:
A process for producing at least one air gap in a microstructure, including supplying a microstructure having at least one gap filled with a sacrificial material that decomposes starting from a temperature θ1, this gap being delimited over at least one part of its surface by a non-porous membrane, composed of a material that forms a matrix and of a pore-forming agent that decomposes at a temperature θ2