摘要:
A light emitting diodes (LEDs) is presented. The LED includes a stress-alleviation layer on a substrate. Open regions and stress-alleviation layer regions are formed on the substrate. Epitaxial layers are disposed on the substrate, at least in the open regions therein, thereby forming an LED structure. The substrate is diced through at least a first portion of the stress-alleviation regions, thereby forming the plurality of LEDs.
摘要:
A semiconductor structure includes a substrate and a conductive carrier-tunneling layer over and contacting the substrate. The conductive carrier-tunneling layer includes first group-III nitride (III-nitride) layers having a first bandgap, wherein the first III-nitride layers have a thickness less than about 5 nm; and second III-nitride layers having a second bandgap lower than the first bandgap, wherein the first III-nitride layers and the second III-nitride layers are stacked in an alternating pattern. The semiconductor structure is free from a III-nitride layer between the substrate and the conductive carrier-tunneling layer. The semiconductor structure further includes an active layer over the conductive carrier-tunneling layer.
摘要:
A method of forming a semiconductor structure includes providing a substrate; forming a buffer/nucleation layer over the substrate; forming a group-III nitride (III-nitride) layer over the buffer/nucleation layer; and subjecting the III-nitride layer to a nitridation. The step of forming the III-nitride layer comprises metal organic chemical vapor deposition.
摘要:
A system and method for manufacturing an LED is provided. A preferred embodiment includes a substrate with a distributed Bragg reflector formed over the substrate. A photonic crystal layer is formed over the distributed Bragg reflector to collimate the light that impinges upon the distributed Bragg reflector, thereby increasing the efficiency of the distributed Bragg reflector. A first contact layer, an active layer, and a second contact layer are preferably either formed over the photonic crystal layer or alternatively attached to the photonic crystal layer.
摘要:
A light-emitting diode (LED) device is provided. The LED device has a lower LED layer and an upper LED layer with a light-emitting layer interposed therebetween. A current blocking layer is formed in the upper LED layer such that current passing between an electrode contacting the upper LED layer flows around the current blocking layer. When the current blocking layer is positioned between the electrode and the light-emitting layer, the light emitted by the light-emitting layer is not blocked by the electrode and the light efficiency is increased. The current blocking layer may be formed by converting a portion of the upper LED layer into a resistive region. In an embodiment, ions such as magnesium, carbon, or silicon are implanted into the upper LED layer to form the current blocking layer.
摘要:
A method of forming a light-emitting diode (LED) device and separating the LED device from a growth substrate is provided. The LED device is formed by forming an LED structure over a growth substrate. The method includes forming and patterning a mask layer on the growth substrate. A first contact layer is formed over the patterned mask layer with an air bridge between the first contact layer and the patterned mask layer. The first contact layer may be a contact layer of the LED structure. After the formation of the LED structure, the growth substrate is detached from the LED structure along the air bridge.
摘要:
A device structure includes a substrate; a group-III nitride layer over the substrate; a metal nitride layer over the group-III nitride layer; and a light-emitting layer over the metal nitride layer. The metal nitride layer acts as a reflector reflecting the light emitted by the light-emitting layer.
摘要:
A semiconductor device including reentrant isolation structures and a method for making such a device. A preferred embodiment comprises a substrate of semiconductor material forming at least one isolation structure having a reentrant profile and isolating one or more adjacent operational components. The reentrant profile of the at least one isolation structure is formed of substrate material and is created by ion implantation, preferably using oxygen ions applied at a number of different angles and energy levels. In another embodiment the present invention is a method of forming an isolation structure for a semiconductor device performing at least one oxygen ion implantation.
摘要:
A semiconductor structure includes a substrate and a conductive carrier-tunneling layer over and contacting the substrate. The conductive carrier-tunneling layer includes first group-III nitride (III-nitride) layers having a first bandgap, wherein the first III-nitride layers have a thickness less than about 5 nm; and second III-nitride layers having a second bandgap lower than the first bandgap, wherein the first III-nitride layers and the second III-nitride layers are stacked in an alternating pattern. The semiconductor structure is free from a III-nitride layer between the substrate and the conductive carrier-tunneling layer. The semiconductor structure further includes an active layer over the conductive carrier-tunneling layer.
摘要:
A method of forming a light-emitting diode (LED) device and separating the LED device from a growth substrate is provided. The LED device is formed by forming an LED structure over a growth substrate. The method includes forming and patterning a mask layer on the growth substrate. A first contact layer is formed over the patterned mask layer with an air bridge between the first contact layer and the patterned mask layer. The first contact layer may be a contact layer of the LED structure. After the formation of the LED structure, the growth substrate is detached from the LED structure along the air bridge.