摘要:
Various processes are provided for producing a p-channel and/or n-channel transistor. The present processes are thereby applicable to NMOS, PMOS or CMOS integrated circuits, any of which derive a benefit from having an asymmetrical LDD structure. The asymmetrical structure can be produced on a p-channel or n-channel transistor in various ways. According, the present process employs various techniques to form an asymmetrical transistor. The various techniques employ processing steps which vary depending upon the LDD result desired. First, the LDD implant can be performed only in the drain-side of the channel, or in the drain-side as well as the source-side. Second, the gate conductor sidewall surface adjacent the drain can be made thicker than the sidewall surface adjacent the source. Thickening of the drain-side sidewall spacer can be achieved either by depositing oxide upon a nitride-bearing film, or by growing additional oxide upon an exposed silicon surface having the source-side sidewall protected from growth. Third, the drain-side can be enhanced relative to the source-side by using an LTA implant. There may be numerous other modifications and alternative processing steps, all of which are described herein. Regardless of the sequence chosen, a barrier implant may be employed to prevent deleterious ingress of p-type implant species into the channel region. The present fabrication sequence reduces source-side resistance to enhance drive current--a desirable outcome for high speed circuits.
摘要:
A semiconductor process for forming an interlevel contact. A semiconductor wafer is provided with a semiconductor substrate, a first conductive layer formed on the substrate, and a dielectric layer formed on the conductive layer. A border layer, preferably comprised of polysilicon or silicon nitride is formed on the dielectric layer. Portions of the border layer are then selectively removed to expose an upper surface of a spacer region of the dielectric layer, the selective removal of the border layer resulting in a border layer having an annular sidewall extending upward from the dielectric layer and encircling the spacer region. A spacer structure is then formed on the annular sidewall, preferably, the spacer structure is formed by chemically vapor depositing a spacer material and anisotropically etching the spacer material to just clear in the planar regions with minimum overetch. The spacer structure thereby covering peripheral portions of the spacer region such that an upper surface of a contact region remains exposed. Portions of the dielectric layer within the contact region are then removed to form a via extending from an upper surface of the spacer structure to an upper surface of the first conductive layer. Preferably, the lateral dimension of the spacer region is approximately equal to the minimum feature size of a photolithography exposure apparatus in the lateral dimension of the via at substantially less than the minimum feature size of the photolithography exposure apparatus.
摘要:
A semiconductor process for forming an interlevel contact. A semiconductor wafer is provided with a semiconductor substrate, a first conductive layer formed on the substrate, and a dielectric layer formed on the conductive layer. A border layer, preferably comprising polysilicon or silicon nitride is formed on the dielectric layer. Portions of the border layer are then selectively removed to expose an upper surface of a spacer region of the dielectric layer, the selective removal of the border layer resulting in a border layer having an annular sidewall extending upward from the dielectric layer and encircling the spacer region. A spacer structure is then formed on the annular sidewall. Preferably, the spacer structure is formed by chemically vapor depositing a spacer material and anisotropically etching the spacer material to just clear in the planar regions with minimum overetch. The spacer structure thereby covers peripheral portions of the spacer region such that an upper surface of a contact region remains exposed. Portions of the dielectric layer within the contact region are then removed to form a via extending from an upper surface of the spacer structure to an upper surface of the first conductive layer. Preferably, the lateral dimension of the spacer region is approximately equal to the minimum feature size of a photolithography exposure apparatus in the lateral dimension of the via at substantially less than the minimum feature size of the photolithography exposure apparatus.
摘要:
An isolation technique is provided for improving the overall planarity of filled isolation regions relative to adjacent silicon mesas. The isolation process results in a silicon mesa having enhanced mechanical and electrical properties. Planarity is performed by repeating the steps of filling isolation trenches, patterning large area isolation trenches, and refilling isolation trenches to present an upper surface having indents which can be readily removed by a chemical-mechanical polish. The silicon mesa upper surface is enhanced by utilizing a unique set of layers stacked upon the silicon substrate, and thereafter patterning the substrate to form raised silicon surfaces, or mesas, having the stacked layers thereon. The patterned, stacked layers include a unique combination of dissimilar compositions which, when removed, leave a silicon mesa upper surface which is recessed below the adjacent, filled trenches. The patterned stacked layers incorporate a polysilicon and/or oxide buffer which prevents deleterious migration of nitrogen from the overlying nitride layer to the underlying silicon mesa upper surface.
摘要:
An isolation technique is provided for improving the overall planarity of filled isolation regions relative to adjacent silicon mesas. The isolation process results in a silicon mesa having enhanced mechanical and electrical properties. Planarity is performed by repeating the steps of filling isolation trenches, patterning large area isolation trenches, and refilling isolation trenches to present an upper surface having indents which can be readily removed by a chemical-mechanical polish. The silicon mesa upper surface is enhanced by utilizing a unique set of layers stacked upon the silicon substrate, and thereafter patterning the substrate to form raised silicon surfaces, or mesas, having the stacked layers thereon. The patterned, stacked layers include a unique combination of dissimilar compositions which, when removed, leave a silicon mesa upper surface which is recessed below the adjacent, filled trenches. The patterned stacked layers incorporate a polysilicon and/or oxide buffer which prevents deleterious migration of nitrogen from the overlying nitride layer to the underlying silicon mesa upper surface.
摘要:
A semiconductor transistor which includes a silicon base layer, a gate dielectric formed on the silicon base layer, first and second silicon source/drain structures, first and second spacer structures, and a silicon gate structure is provided. A method for forming the semiconductor transistor may include a semiconductor process in which a dielectric layer is formed on an upper surface of a semiconductor substrate which includes a silicon base layer. Thereafter, an upper silicon layer is formed on an upper surface of the dielectric layer. The dielectric layer and the upper silicon layer are then patterned to form first and second silicon-dielectric stacks on the upper surface of the base silicon layer. The first and second silicon-dielectric stacks are laterally displaced on either side of a channel region of the silicon substrate and each include a proximal sidewall and a distal sidewall. The proximal sidewalls are approximately coincident with respective boundaries of the channel region. Thereafter, proximal and distal spacer structures are formed on the proximal and distal sidewalls respectively of the first and second silicon-dielectric stacks. A gate dielectric layer is then formed on exposed portions of the silicon base layer over a channel region of the base silicon layer. Portions of the first and second silicon-dielectric stacks located over respective source/drain regions of the base silicon layer are then selectively removed. Silicon is then deposited to fill first and second voids created by the selected removal of the stacks. The silicon deposition also fills a silicon gate region above the gate dielectric over the channel region. Thereafter, an impurity distribution is introduced into the deposited silicon. The deposited silicon is then planarized to physically isolate the silicon within the gate region from the silicon within the first and second voids resulting in the formation of a transistor including a silicon gate structure and first and second source/drain structures.
摘要:
The formation of a spacer for precise salicide formation is disclosed. In one embodiment, a method includes four steps. In the first step, at least one first spacer is formed, where each spacer is adjacent to an edge of a gate on a substrate and has a triangular geometry. In the second step, an ion implantation is applied to form a graded lightly doped region within the substrate underneath each spacer, the region corresponding to the triangular geometry of the spacer. In the third step, at least one second spacer is formed, where each second spacer overlaps a corresponding first spacer. In the fourth step, a metal silicide within the substrate is formed immediately adjacent to each second spacer.
摘要:
A semiconductor device can be formed with active regions disposed in a substrate adjacent to a gate electrode and a doped region, of the same conductivity type as the active regions, embedded beneath the channel region defined by the active regions. In one embodiment, a patterned masking layer having at least one opening is formed over the substrate. A dopant material is implanted into the substrate using the masking layer to form active regions adjacent to the opening and an embedded doped region that is between and spaced apart from the active regions and is deeper in the substrate then the active regions. In addition or alternatively, spacer structures can be formed on the gate electrode by forming a conformal dielectric layer along a bottom surface and at least one sidewall of the opening and forming a gate electrode in the opening over the dielectric layer. The masking layer is then removed to leave the dielectric layer between the gate electrode and the substrate and as spacer structures on the sidewalls of the gate electrode.
摘要:
An integrated circuit transistor is provided having a gate oxide and a gate conductor arranged upon a semiconductor topography, the gate oxide and gate conductor are formed within a common chamber. The initial semiconductor topography includes a silicon substrate having isolation regions disposed within its upper surface. The semiconductor topography may include an defined region, or well, doped opposite the substrate. The semiconductor topography is first placed in the common chamber. A separate chamber is operably placed gaseous communication with the common chamber. A plasma is created within the separate chamber, causing nitrogen, silicon, and oxygen containing compounds therein to form ions, molecular fragments, and excited molecules which are transported to the common chamber. The ions, molecular fragments, and excited molecules react and bombard the surface of the semiconductor topography to form an oxide layer thereon. The oxide layer is incorporated with nitrogen atoms which act as barrier atoms. Polysilicon is then deposited upon the oxide layer by CVD within the common chamber. The semiconductor topography is never exposed to ambient conditions outside the common chamber during and between the plasma oxide formation and the polysilicon deposition steps. Preventing ingress of outside ambient helps minimize contamination from entering the oxide. During the polysilicon deposition, dopant atoms are forwarded and become entrained within the polysilicon. The barrier atoms within the deposited oxide helps minimize dopant atoms from passing through the oxide and entering the channel below the oxide.
摘要:
A high speed MOS device has a scaled channel length and integrated spacers. The MOS device is formed on a substrate having active and isolation regions. In constructing the MOS device wells and Vt regions are formed as required. Then, a thin nitride layer is formed upon the substrate. Subsequently, an oxide layer is formed upon the nitride layer. Then, the oxide layer is pattern masked to expose gate regions. The gate regions are sloped etched to form slope etched voids. The slope etching may proceed to the nitride layer, through a portion of the nitride layer or fully through the nitride layer, depending upon the embodiment. In another embodiment, the nitride layer is not deposed and the oxide layer is either fully or partially slope etched to the silicon substrate. The patterned mask is then removed and remaining portions of the nitride layer may be converted to an oxynitride. Additionally, a gate oxide may be formed. The slope etched void is then filled with a gate conductor and the surface is planarized in a CMP process. The gate conductor then has a shape wherein its lower surface is smaller than its upper surface. Then, the substrate is isotropically etched to remove portions of the oxide layer and nitride layer unprotected by the gate conductor. The remaining structure includes integrally formed spacers. Active regions, LDD regions and punchthrough regions are then formed to complete formation of the transistor.