Abstract:
An article for high temperature service is presented. The article includes a substrate and a thermal barrier coating disposed on the substrate. The thermal barrier coating includes a plurality of aluminum-based particles dispersed in an inorganic binder, wherein the aluminum-based particles are substantially spaced apart from each other via the inorganic binder such that the thermal barrier coating is substantially electrically and thermally insulating. Method of making the article is also presented.
Abstract:
The present invention is directed to coating compositions for forming diffusion coatings on metal-based substrates. The coating compositions may include a metal powder, an inorganic salt, an activator, and a binder. The present invention is also directed to processes for forming diffusion coatings on metal-based substrates using the disclosed coating compositions.
Abstract:
A surface treatment method includes: contacting a substrate with a treatment material, the substrate comprising a metallic element, the treatment material comprising an alkaline earth metal element, an alkali metal element, or any combination thereof; and forming on the substrate a surface layer comprising a first oxide of the alkaline earth metal element, the alkali metal element, or any combination thereof and a second oxide of the metallic element. A device has: a substrate layer comprising a metallic element; and a surface layer comprising a first oxide of an alkaline earth metal element, an alkali metal element, or any combination thereof, and a second oxide of the metallic element.
Abstract:
A gas turbine engine component includes a substrate formed of a high temperature resistant material and a corrosion resistant layer. The corrosion resistant layer is inert to the molten salt impurities and includes a refractory metal vanadate of formula MxVyOz, wherein M is selected from the group consisting of alkaline earth metals, group IV and V transition metals, rare-earth metals and their combinations, and wherein z=x+2.5y, or z=1.5x+2.5y, or z=2x+2.5y.
Abstract:
An article for high temperature service is presented. The article includes a substrate and a thermal barrier coating disposed on the substrate. The thermal barrier coating includes a plurality of aluminum-based particles dispersed in an inorganic binder, wherein the aluminum-based particles are substantially spaced apart from each other via the inorganic binder such that the thermal barrier coating is substantially electrically and thermally insulating. Method of making the article is also presented.
Abstract:
A composition includes molybdenum disulfide, epoxy binder, and 0.01 to 3 wt % lead. The composition is useful, for example, as dry film lubricant.
Abstract:
A composition useful in methods and apparatuses for inhibiting the build-up of byproduct carbonaceous material includes a perovskite material or a precursor therefor; and a yttrium doped ceria or a precursor therefor.
Abstract:
A method for cracking hydrocarbon includes: providing hydrocarbon; and feeding the hydrocarbon into an apparatus having an inner surface accessible to hydrocarbon, the inner surface comprising a perovskite material and a tuning material; wherein a yield of coke in the apparatus is lower than that in an apparatus without the perovskite material; and a yield of carbon monoxide in the apparatus is lower than that in an apparatus without the tuning material. An associated apparatus is also described.
Abstract:
An article for high temperature service is presented. The article includes a substrate and a thermal barrier coating disposed on the substrate. The thermal barrier coating includes a plurality of aluminum-based particles dispersed in an inorganic binder, wherein the aluminum-based particles are substantially spaced apart from each other via the inorganic binder such that the thermal barrier coating is substantially electrically and thermally insulating. Method of making the article is also presented.
Abstract:
A gasification component for use in a gasification environment includes a metal-based substrate and a coating deposited on the metal-based substrate. The coating includes at least about 51% by weight of chromium in the alpha phase at an operating temperature of gasification.