Abstract:
Integrated circuits with single core inductors and methods for producing them are provided. Embodiments include forming a trench in a dielectric layer; forming a first metal-oxide hard mask by disposing a metal hard mask and an oxide hard mask over the dielectric layer and in strips in the trench; forming metal line trenches through the first metal-oxide hard mask and into the first dielectric layer on opposite sides of the inductor trench and first vias; filling the first metal line trenches, first vias, and trench; forming another dielectric layer and a second metal-oxide hard mask over the filled trench; forming a second trench through the second metal-oxide hard mask and into the second dielectric layer and second metal line trenches and second vias; and filling the second metal line trenches, second vias, and second trench.
Abstract:
At least one method, apparatus and system disclosed herein fin field effect transistor (finFET) comprising a bulbous fin head. A fin of a gate of a transistor is formed. A first recess step is performed for striping a hard mask material by a first dimension to expose a first portion of the fin. An epitaxy layer is formed upon the first portion. An oxidation process is performed upon the fin. An oxide removal process is performed upon the fin to provide a bulbous shape upon the first portion.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a capacitor trench through a dielectric layer, and forming a base layer overlying the dielectric layer and within the capacitor trench. A base layer via gap is formed in the base layer, where the base layer via gap is positioned overlying the dielectric layer and the first contact. A base plate and a shield are formed from the base layer, where the base plate is within the capacitor trench. A capacitor insulating layer is formed overlying the base plate, the base layer, and within the base layer via gap, and a via is formed through the base layer via gap. A second contact and a top plate are simultaneously formed, where the second contact is formed in the via and the top plate is formed in the capacitor trench.
Abstract:
A method of forming a self-forming barrier includes selectively removing a portion of a semiconductor dielectric layer to form a three-dimensional pattern within a remaining portion of the dielectric layer. A metal liner layer is disposed on a surface of the pattern to provide a metal lined pattern. A metal filling is disposed over the metal lined pattern, the metal filling being at least partially composed of a metal used in the metal liner layer. Diffusion ions are disposed in one of the metal filling and the metal liner layer. Heat is applied to the metal filling and metal liner layer to diffuse the diffusion ions from one of the metal filling and the metal liner layer into the dielectric layer to form a barrier layer between the metal liner layer and the dielectric layer.
Abstract:
Capacitor and contact structures are provided, as well as methods for forming the capacitor and contact structures. The methods include, for instance, providing a layer of conductive material above a conductive structure and above a lower electrode of a capacitor; etching the layer of conductive material to define a conductive material hard mask and an upper electrode of the capacitor, the conductive material hard mask being disposed at least partially above the conductive structure; and forming a first conductive contact structure and a second conductive contact structure, the first conductive contact structure extending through an opening in the conductive material hard mask and conductively contacting the conductive structure, and the second conductive contact structure conductively contacting one of the lower electrode of the capacitor, or the upper electrode of the capacitor.
Abstract:
A capacitor includes a bottom electrode and a top electrode positioned above the bottom electrode. The top electrode and the bottom electrode are conductively coupled to one another. A middle electrode is positioned between the bottom electrode and the top electrode. A lower dielectric layer is positioned between the bottom electrode and the middle electrode. An upper dielectric layer positioned between the middle electrode and the top electrode. A first contact is conductively coupled to the top electrode. A second contact is conductively coupled to the middle electrode.
Abstract:
At least one method, apparatus and system disclosed herein fin field effect transistor (finFET) comprising a bulbous fin head. A fin of a gate of a transistor is formed. A first recess step is performed for striping a hard mask material by a first dimension to expose a first portion of the fin. An epitaxy layer is formed upon the first portion. An oxidation process is performed upon the fin. An oxide removal process is performed upon the fin to provide a bulbous shape upon the first portion.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a capacitor trench through a dielectric layer, and forming a base layer overlying the dielectric layer and within the capacitor trench. A base layer via gap is formed in the base layer, where the base layer via gap is positioned overlying the dielectric layer and the first contact. A base plate and a shield are formed from the base layer, where the base plate is within the capacitor trench. A capacitor insulating layer is formed overlying the base plate, the base layer, and within the base layer via gap, and a via is formed through the base layer via gap. A second contact and a top plate are simultaneously formed, where the second contact is formed in the via and the top plate is formed in the capacitor trench.
Abstract:
A serial capacitor comprised of a bottom electrode, a top electrode that is conductively coupled the bottom electrode, a middle electrode positioned between the bottom and top electrode, a lower dielectric layer positioned between the bottom and middle electrodes, and an upper dielectric layer positioned between the middle and the electrodes. A method includes forming the bottom electrode in a first layer of insulating material, forming the lower dielectric layer and the middle electrode above the bottom electrode, wherein the middle electrode is positioned in a second layer of insulating material, forming the upper dielectric layer above the middle electrode, forming an opening that exposes a portion of the bottom electrode, and forming the top electrode above the upper dielectric layer, wherein a portion of the top electrode extends through the opening and contacts the bottom electrode.
Abstract:
A capacitor includes a bottom electrode and a top electrode positioned above the bottom electrode. The top electrode and the bottom electrode are conductively coupled to one another. A middle electrode is positioned between the bottom electrode and the top electrode. A lower dielectric layer is positioned between the bottom electrode and the middle electrode. An upper dielectric layer is positioned between the middle electrode and the top electrode. A first contact is conductively coupled to the top electrode. A second contact is conductively coupled to the middle electrode.