Abstract:
An illustrative method disclosed herein includes providing a semiconductor structure. The semiconductor structure includes a logic transistor region, a ferroelectric transistor region and an input/output transistor region. A first protection layer is formed over the semiconductor structure. The first protection layer covers the logic transistor region and the input/output transistor region. At least a portion of the ferroelectric transistor region is not covered by the first protection layer. After the formation of the first protection layer, a ferroelectric transistor dielectric is deposited over the semiconductor structure, the ferroelectric transistor dielectric and the first protection layer are removed from the logic transistor region and the input/output transistor region, an input/output transistor dielectric is formed over the input/output transistor region and a logic transistor dielectric is formed over at least the logic transistor region.
Abstract:
A method includes performing a first chemical mechanical polishing process to define a polished replacement gate structure having a dished upper surface, wherein the polished dished upper surface of the polished replacement gate structure has a substantially curved concave configuration. A gate cap layer is formed above the polished replacement gate structure, wherein a bottom surface of the gate cap layer corresponds to the polished dished upper surface of the polished replacement gate structure.
Abstract:
An illustrative method disclosed herein includes providing a semiconductor structure. The semiconductor structure includes a logic transistor region, a ferroelectric transistor region and an input/output transistor region. A first protection layer is formed over the semiconductor structure. The first protection layer covers the logic transistor region and the input/output transistor region. At least a portion of the ferroelectric transistor region is not covered by the first protection layer. After the formation of the first protection layer, a ferroelectric transistor dielectric is deposited over the semiconductor structure, the ferroelectric transistor dielectric and the first protection layer are removed from the logic transistor region and the input/output transistor region, an input/output transistor dielectric is formed over the input/output transistor region and a logic transistor dielectric is formed over at least the logic transistor region.
Abstract:
A method includes performing a first chemical mechanical polishing process to define a polished replacement gate structure having a dished upper surface, wherein the polished dished upper surface of the polished replacement gate structure has a substantially curved concave configuration. A gate cap layer is formed above the polished replacement gate structure, wherein a bottom surface of the gate cap layer corresponds to the polished dished upper surface of the polished replacement gate structure.
Abstract:
When forming sophisticated semiconductor devices requiring resistors based on polysilicon material having non-silicided portions, the respective cap material for defining the silicided portions may be omitted during the process sequence, for instance, by using a patterned liner material or by applying a process strategy for removing the metal material from resistor areas that may not receive a corresponding metal silicide. By implementing the corresponding process strategies, semiconductor devices may be obtained with reduced probability of contact failures, with superior performance due to relaxing surface topography upon forming the contact level, and/or with increased robustness with respect to contact punch-through.
Abstract:
In semiconductor devices, some active regions may frequently have to be formed on the basis of a silicon/germanium (Si/Ge) mixture in order to appropriately adjust transistor characteristics, for instance, for P-type transistors. To this end, the present disclosure provides manufacturing techniques and respective devices in which at least two different types of active regions, including Si/Ge material, may be provided with a high degree of compatibility with conventional process strategies. Due to the provision of different germanium concentrations, increased flexibility in adjusting characteristics of transistor elements that require Si/Ge material in their active regions may be achieved.
Abstract:
When forming sophisticated semiconductor devices requiring resistors based on polysilicon material having non-silicided portions, the respective cap material for defining the silicided portions may be omitted during the process sequence, for instance, by using a patterned liner material or by applying a process strategy for removing the metal material from resistor areas that may not receive a corresponding metal silicide. By implementing the corresponding process strategies, semiconductor devices may be obtained with reduced probability of contact failures, with superior performance due to relaxing surface topography upon forming the contact level, and/or with increased robustness with respect to contact punch-through.
Abstract:
In semiconductor devices, some active regions may frequently have to be formed on the basis of a silicon/germanium (Si/Ge) mixture in order to appropriately adjust transistor characteristics, for instance, for P-type transistors. To this end, the present disclosure provides manufacturing techniques and respective devices in which at least two different types of active regions, including Si/Ge material, may be provided with a high degree of compatibility with conventional process strategies. Due to the provision of different germanium concentrations, increased flexibility in adjusting characteristics of transistor elements that require Si/Ge material in their active regions may be achieved.
Abstract:
A semiconductor device includes a first transistor element having a first channel region and a second transistor element having a second channel region, wherein the first channel region includes a first crystalline silicon/germanium (Si/Ge) material mixture having a first germanium concentration, and wherein the second channel region includes a second crystalline Si/Ge material mixture having a second germanium concentration that is higher than the first germanium concentration.
Abstract:
A method of manufacturing a trench isolation of a semiconductor device is provided including providing a silicon-on-insulator (SOI) substrate comprising a semiconductor bulk substrate, a buried oxide layer formed on the semiconductor bulk substrate and a semiconductor layer formed on the buried oxide layer, forming a trench through the semiconductor layer and extending at least partially into the buried oxide layer, forming a liner at sidewalls of the trench, deepening the trench into the semiconductor bulk substrate, filling the deepened trench with a flowable dielectric material, and performing an anneal of the flowable dielectric material.