Abstract:
A method of fabricating amorphous metal interconnections includes forming an amorphous metal layer over a base insulating layer on a semiconductor device using an amorphous metal having a non-crystalline structure. A portion of the amorphous metal layer is selectively removed to form a three dimensional pattern within a remaining portion of the amorphous metal layer. A fill insulating layer is disposed over the remaining portion of the amorphous metal layer and base insulating layer to fill the three dimensional pattern to form amorphous metal interconnects between semiconductor devices.
Abstract:
A trench in an inter-layer dielectric formed on a semiconductor substrate is defined by a bottom and sidewalls. A copper barrier lines the trench with a copper-growth-promoting liner over the barrier. The trench has bulk copper filling it, and includes voids in the copper. The copper with voids is removed, including from the sidewalls, leaving a void-free copper portion at the bottom. Immersion in an electroless copper bath promotes upward growth of copper on top of the void-free copper portion without inward sidewall copper growth, resulting in a void-free copper fill of the trench.
Abstract:
A process is provided for methods of reducing contamination of the self-forming barrier of an ultra-low k layer during semiconductor fabrication. In one aspect, a method includes: providing a cured ultra-low k film which contains at least one trench, and the pores of the film are filled with a pore-stuffing material; removing exposed pore-stuffing material at the surface of the trench to form exposed pores; and forming a self-forming barrier layer on the surface of the trench.
Abstract:
A process is provided for methods of reducing damage to an ultra-low k layer during fabrication. In one aspect, a method includes: providing a cured ultra-low k film containing pores filled with a pore-stuffing material; and modifying an exposed surface of the ultra-low k film to provide a modified layer in the ultra-low k film. In another aspect, a semiconductor device comprising a modified layer on a surface of an ultra-low k film is provided.
Abstract:
A method of forming a self-forming barrier with an integrated self-aligned metal cap, wherein the barrier is formed on all surfaces of the via, and the resulting device are provided. Embodiments include forming a metal line in a first Si-based dielectric layer; removing a portion of the metal line; depositing a metal cap over the metal line; forming a second Si-based dielectric layer on the first Si-based dielectric layer and the metal cap; forming a cavity in the second Si-based dielectric layer down to the metal cap; and depositing a barrier-forming layer on side and bottom surfaces of the cavity and over the second Si-based dielectric layer.
Abstract:
A process is provided for the removal of contaminants from a semiconductor device, for example, removing contaminants from pores of an ultra-low k film. In one aspect, a method includes: providing a dielectric layer with contaminant-containing pores and exposing the dielectric layer to a supercritical fluid. The supercritical fluid can dissolve and remove the contaminants. In another aspect, an intermediate semiconductor device structure is provided that contains a dielectric layer with contaminant-containing pores and a supercritical fluid within the pores. In another aspect, a semiconductor device structure with a dielectric layer containing uncontaminated pores is provided.