Abstract:
A process is provided for methods of reducing damage to an ultra-low k layer during fabrication. In one aspect, a method includes: providing a cured ultra-low k film containing pores filled with a pore-stuffing material; and modifying an exposed surface of the ultra-low k film to provide a modified layer in the ultra-low k film. In another aspect, a semiconductor device comprising a modified layer on a surface of an ultra-low k film is provided.
Abstract:
A process is provided for methods of reducing contamination of the self-forming barrier of an ultra-low k layer during semiconductor fabrication. In one aspect, a method includes: providing a cured ultra-low k film which contains at least one trench, and the pores of the film are filled with a pore-stuffing material; removing exposed pore-stuffing material at the surface of the trench to form exposed pores; and forming a self-forming barrier layer on the surface of the trench.
Abstract:
A method of fabricating amorphous metal interconnections includes forming an amorphous metal layer over a base insulating layer on a semiconductor device using an amorphous metal having a non-crystalline structure. A portion of the amorphous metal layer is selectively removed to form a three dimensional pattern within a remaining portion of the amorphous metal layer. A fill insulating layer is disposed over the remaining portion of the amorphous metal layer and base insulating layer to fill the three dimensional pattern to form amorphous metal interconnects between semiconductor devices.
Abstract:
Circuit structure fabrication methods are provided which include: patterning at least one opening within a dielectric layer disposed over a substrate structure; providing a liner material within the at least one opening of the dielectric layer; disposing a surfactant over at least a portion of the liner material; and depositing, using an electroless process, a conductive material over the liner material to form a conductive structure, and the disposed surfactant inhibits formation of a void within the conductive structure.
Abstract:
A process is provided for the removal of contaminants from a semiconductor device, for example, removing contaminants from pores of an ultra-low k film. In one aspect, a method includes: providing a dielectric layer with contaminant-containing pores and exposing the dielectric layer to a supercritical fluid. The supercritical fluid can dissolve and remove the contaminants. In another aspect, an intermediate semiconductor device structure is provided that contains a dielectric layer with contaminant-containing pores and a supercritical fluid within the pores. In another aspect, a semiconductor device structure with a dielectric layer containing uncontaminated pores is provided.