Abstract:
A process is provided for methods of reducing damage to an ultra-low k layer during fabrication. In one aspect, a method includes: providing a cured ultra-low k film containing pores filled with a pore-stuffing material; and modifying an exposed surface of the ultra-low k film to provide a modified layer in the ultra-low k film. In another aspect, a semiconductor device comprising a modified layer on a surface of an ultra-low k film is provided.
Abstract:
A process is provided for methods of reducing contamination of the self-forming barrier of an ultra-low k layer during semiconductor fabrication. In one aspect, a method includes: providing a cured ultra-low k film which contains at least one trench, and the pores of the film are filled with a pore-stuffing material; removing exposed pore-stuffing material at the surface of the trench to form exposed pores; and forming a self-forming barrier layer on the surface of the trench.
Abstract:
Devices and methods of fabricating integrated circuit devices for forming low resistivity interconnects are provided. One method includes, for instance: obtaining an intermediate semiconductor interconnect device having a substrate, a cap layer, and a dielectric matrix including a set of trenches and a set of vias; depositing a barrier layer along a top surface of the semiconductor interconnect device; depositing and annealing a metal interconnect material over a top surface of the barrier layer, wherein the metal interconnect material fills the set of trenches and the set of vias; planarizing a top surface of the intermediate semiconductor interconnect device; exposing a portion of the barrier layer between the set of trenches and the set of vias; and depositing a dielectric cap. Also disclosed is an intermediate device formed by the method.
Abstract:
Devices and methods of fabricating devices are provided. One method includes: obtaining an intermediate semiconductor device having a dielectric layer, an insulating layer, and a plurality of metal lines, including a liner material and a first metal material; recessing the metal material of each metal line forming a set of cavities; filling the cavities with a protective cap; etching the protective cap and the liner material in the set of cavities; depositing a plurality of dielectric caps in the set of cavities; depositing an interlayer dielectric layer over the insulating layer and the plurality of dielectric caps; patterning a via in the interlayer dielectric layer; and depositing a lining and a second metal material in the interconnect area; wherein the second metal material is electrically insulated from the first metal in at least one of the plurality of metal lines.
Abstract:
Semiconductor structure and methods of fabrication thereof are provided which includes, for instance, providing a carbon-doped material layer within a recess of a semiconductor structure; removing, in part, carbon from the carbon-doped material layer to obtain, at least in part, a carbon-depleted region thereof, the carbon-depleted region having a modified etch property with an increased etch rate compared to an etch rate of the carbon-doped material layer; and recessing the carbon-depleted region of the carbon-doped material layer by an etching process, with the carbon-depleted region being recessed based upon, in part, the modified etch property of the carbon-depleted region.
Abstract:
A process is provided for the removal of contaminants from a semiconductor device, for example, removing contaminants from pores of an ultra-low k film. In one aspect, a method includes: providing a dielectric layer with contaminant-containing pores and exposing the dielectric layer to a supercritical fluid. The supercritical fluid can dissolve and remove the contaminants. In another aspect, an intermediate semiconductor device structure is provided that contains a dielectric layer with contaminant-containing pores and a supercritical fluid within the pores. In another aspect, a semiconductor device structure with a dielectric layer containing uncontaminated pores is provided.
Abstract:
Devices and methods of fabricating integrated circuit devices for forming low resistivity interconnects are provided. One method includes, for instance: obtaining an intermediate semiconductor interconnect device having a substrate, a cap layer, and a dielectric matrix including a set of trenches and a set of vias; depositing a barrier layer along a top surface of the semiconductor interconnect device; depositing and annealing a metal interconnect material over a top surface of the barrier layer, wherein the metal interconnect material fills the set of trenches and the set of vias; planarizing a top surface of the intermediate semiconductor interconnect device; exposing a portion of the barrier layer between the set of trenches and the set of vias; and depositing a dielectric cap. Also disclosed is an intermediate device formed by the method.
Abstract:
Devices and methods of fabricating integrated circuit devices for forming assymetric line/space with barrierless metallization are provided. One method includes, for instance: obtaining an intermediate semiconductor device having a substrate, a dielectric matrix, and a hardmask, the dielectric matrix including a set of trenches etched into the dielectric matrix and a set of dielectric fins comprising the dielectric matrix, wherein the set of trenches and the set of dielectric fins are of equal width; damaging an inner surface of each trench of the set of trenches; etching the damaged material of the trenches removing the damaged material of the dielectric matrix; removing the hardmask; and metallizing the trenches by depositing a metal directly on the dielectric matrix with no barrier between the metal and the dielectric matrix after the etching. Also disclosed is an intermediate device formed by the method.
Abstract:
Devices and methods of fabricating integrated circuit devices for forming low resistivity interconnects with improved adhesion are provided. One method includes, for instance: obtaining an intermediate semiconductor interconnect device having a substrate, a cap layer, and a dielectric matrix including a set of trenches and a set of vias; depositing a metal interconnect material directly over and contacting a top surface of the dielectric matrix, wherein the metal interconnect material fills the set of trenches and the set of vias; depositing a barrier layer over a top surface of the device; annealing the barrier layer to diffuse the barrier layer to a bottom surface of the metal interconnect material; planarizing a top surface of the intermediate semiconductor interconnect device; and depositing a dielectric cap over the intermediate semiconductor interconnect device.
Abstract:
Methods for defining an isolation region of a semiconductor structure are provided. The method includes, for instance: providing a semiconductor structure with a recess therein; disposing an insulator layer conformally within the recess in the semiconductor structure to partially fill the recess; modifying at least one material property of the insulator layer to obtain a densified insulator layer within the recess, where the modifying reduces a thickness of the densified insulator layer compared to that of the insulator layer; and depositing at least one additional insulator layer within the recess over the densified insulator layer, where the densified insulator layer within the recess defines, at least in part, an isolation region of the semiconductor structure.