Abstract:
Systems and methods are provided for detecting the flow of blood or other fluids in biological tissue by illuminating the biological tissue with two or more beams of coherent light and detecting responsively emitted light. A difference in wavelength, coherence length, beam divergence, or some other property of the beams of illumination causes the beams to preferentially scatter from, be absorbed by, or otherwise interact with respective elements of the biological tissue. Flow properties in one or more regions of the biological tissue (e.g., a region with which both beams of light preferentially interact, a region with which only one of the beams preferentially interacts) could be determined based on detected responsively emitted light from the biological tissue. Variations in speckle patterns over time and/or space, Doppler shifts, or some other properties of the detected light could be used to determine the flow properties.
Abstract:
Wearable devices are described herein including at least two photodetectors and a mount configured to mount the at least two photodetectors to an external surface of a wearer. The at least two photodetectors are configured to detect alignment between the wearable device and a target on or in the body of the wearer (e.g., to detect the location of vasculature within the body of the wearer relative to the at least two photodetectors). Alignment of the at least two photodetectors relative to the target could enable detection of one or more physiological properties of the wearer. For example, the wearable device could include a sensor configured to detect a property of the target when the sensor is above the target, and alignment of the target relative to the at least two photodetectors could include the sensor being located above the target.
Abstract:
Methods and devices for measuring blood flow velocity are provided. The device may include a wave source and at least two detectors positioned along a blood vessel. The wave source, which may include an ultrasound transducer or a mechanical source, is configured to induce a pressure wave in blood flowing in a blood vessel. In one example, the detectors are both positioned downstream of the wave source, with respect to the direction of blood flow. In another example, one detector is positioned upstream of the wave source, and a second detector is positioned downstream of the wave source. The difference in time it takes for the induced pressure wave to reach the first and the second detectors is indicative of the velocity of blood flow in the vessel.
Abstract:
An engineered particle for detecting analytes in an environment includes an electromagnetic receiver that is configured to preferentially receive electromagnetic radiation of a specified polarization relative to the orientation of the electromagnetic receiver. The engineered particle additionally includes an energy emitter coupled to the electromagnetic receiver such that a portion of electromagnetic energy received by the electromagnetic receiver is transferred to and emitted by the energy emitter. The engineered particles are functionalized to selectively interact with an analyte. The engineered particle can additionally be configured to align with a directed energy field in the environment. The selective reception of electromagnetic radiation of a specified polarization and/or alignment with a directed energy field can enable orientation tracking of individual engineered particles, imaging in high-noise environments, or other applications. A method for detecting properties of the analyte of interest by interacting with the engineered particle is also provided.
Abstract:
An imaging agent for detecting analytes in a biological environment includes functionalized, silicon vacancy center-containing nanodiamonds. Individual nanodiamonds of the imaging agent include at least one silicon vacancy center. The at least one silicon vacancy center can emit light having a wavelength in a narrow band in response to illumination having any wavelength in a wide range of wavelengths. The nanodiamonds are functionalized to selectively interact with an analyte of interest. The nanodiamonds can additionally include other color centers, and the imaging agent can include a plurality of sets of nanodiamonds having detectably unique ratios of silicon vacancy centers to other color centers. The silicon vacancy centers in the nanodiamonds can have a preferred orientation enabling orientation tracking of individual nanodiamonds or other applications. A method for detecting properties of the analyte of interest by interacting with the imaging agent is also provided.