Abstract:
An image generating system includes an electromagnetic (“EM”) modulator, a camera module and a logic engine. The EM modulator is positioned to direct EM waves to a photoactive surface to stimulate the photoactive surface to generate an image. The camera module is positioned to monitor the photoactive surface to generate image data. The logic engine is communicatively coupled to the camera module and configured to receive the image data from the camera module and analyze the image data. The logic engine is communicatively coupled to the EM modulator to command the EM modulator where to direct the EM waves in response to the image data.
Abstract:
Embodiments described herein may relate to an unmanned aerial vehicle (UAV) navigating to a target in order to provide medical support. An illustrative method involves a UAV (a) determining an approximate target location associated with a target, (b) using a first navigation process to navigate the UAV to the approximate target location, where the first navigation process generates flight-control signals based on the approximate target location, (c) making a determination that the UAV is located at the approximate target location, and (d) in response to the determination that the UAV is located at the approximate target location, using a second navigation process to navigate the UAV to the target, wherein the second navigation process generates flight-control signals based on real-time localization of the target.
Abstract:
Embodiments described herein may help to provide support via a fleet of unmanned aerial vehicles (UAVs). An illustrative medical-support system may include multiple UAVs, which are configured to provide support for a number of different situations. Further, the medical-support system may be configured to: (a) identify a remote situation, (b) determine a target location corresponding to the situation, (c) select a UAV from the fleet of UAVs, where the selection of the UAV is based on a determination that the selected UAV is configured for the identified situation, and (d) cause the selected UAV to travel to the target location to provide support.
Abstract:
An imaging agent for detecting analytes in an environment includes functionalized nanodiamonds and functionalized magnetic particles that can selectively interact with an analyte. Each functionalized nanodiamond contains at least one color center configured emit light in response to illumination. At least one property of the light emitted by the color centers is related to the proximity of the functionalized magnetic particles to the color centers. This property can be detected to determine that the functionalized nanodiamonds are proximate to the functionalized magnetic particles, to determine that the functionalized nanodiamonds and the functionalized magnetic particles are interacting with the analyte, or other applications. Devices and methods for detecting properties of the analyte by interacting with the functionalized nanodiamonds and functionalized magnetic particles are also provided.
Abstract:
Embodiments described herein may help to provide support via a fleet of unmanned aerial vehicles (UAVs). An illustrative medical-support system may include multiple UAVs, which are configured to provide support for a number of different situations. Further, the medical-support system may be configured to: (a) identify a remote situation, (b) determine a target location corresponding to the situation, (c) select a UAV from the fleet of UAVs, where the selection of the UAV is based on a determination that the selected UAV is configured for the identified situation, and (d) cause the selected UAV to travel to the target location to provide support.
Abstract:
Embodiments described herein may relate to an unmanned aerial vehicle (UAV) navigating to a medical situation in order to provide medical support. An illustrative method involves a UAV (a) housing a medical-support device, (b) determining a target location associated with at least one individual in need of medical assistance, (c) navigating the UAV from a remote location to the target location, (d) the computing system making a determination that the UAV is located at the target location, and (e) in response to the determination that the UAV is located at the target location, delivering by a delivery mechanism the medical-support device for providing medical assistance for the at least one individual in need of medical assistance.
Abstract:
A method for real-time, high-density physiological data collection includes automatically measuring, by a wearable device, one or more physiological parameters during each of a plurality of measurement periods, and upon conclusion of a measurement period, for each of the plurality of measurement periods, automatically transmitting by the wearable device data representative of the physiological parameters measured during that measurement period, to a server, the server configured to develop a baseline profile based on the data transmitted by the wearable device for the plurality of measurement periods. The measurement periods may extend through a plurality of consecutive days, and each of the consecutive days may include multiple measurement periods. At least some of the physiological parameters are measured by non-invasively detecting one or more analytes in blood circulating in subsurface vasculature proximate to the wearable device.
Abstract:
Embodiments described herein may relate to an unmanned aerial vehicle (UAV) navigating to a target in order to provide medical support. An illustrative method involves a UAV (a) determining an approximate target location associated with a target, (b) using a first navigation process to navigate the UAV to the approximate target location, where the first navigation process generates flight-control signals based on the approximate target location, (c) making a determination that the UAV is located at the approximate target location, and (d) in response to the determination that the UAV is located at the approximate target location, using a second navigation process to navigate the UAV to the target, wherein the second navigation process generates flight-control signals based on real-time localization of the target.
Abstract:
An imaging agent for detecting analytes in a biological environment includes functionalized, silicon vacancy center-containing nanodiamonds. Individual nanodiamonds of the imaging agent include at least one silicon vacancy center. The at least one silicon vacancy center can emit light having a wavelength in a narrow band in response to illumination having any wavelength in a wide range of wavelengths. The nanodiamonds are functionalized to selectively interact with an analyte of interest. The nanodiamonds can additionally include other color centers, and the imaging agent can include a plurality of sets of nanodiamonds having detectably unique ratios of silicon vacancy centers to other color centers. The silicon vacancy centers in the nanodiamonds can have a preferred orientation enabling orientation tracking of individual nanodiamonds or other applications. A method for detecting properties of the analyte of interest by interacting with the imaging agent is also provided.
Abstract:
Embodiments described herein may help to provide medical support via a fleet of unmanned aerial vehicles (UAVs). An illustrative medical-support system may include multiple UAVs, which are configured to provide medical support for a number of different medical situations. Further, the medical-support system may be configured to: (a) identify a remote medical situation, (b) determine a target location corresponding to the medical situation, (c) select a UAV from the fleet of UAVs, where the selection of the UAV is based on a determination that the selected UAV is configured for the identified medical situation, and (d) cause the selected UAV to travel to the target location to provide medical support.